2-D regional short-term wind speed forecast based on CNN-LSTM deep learning model

被引:131
|
作者
Chen, Yaoran [1 ]
Wang, Yan [1 ]
Dong, Zhikun [1 ]
Su, Jie [1 ]
Han, Zhaolong [1 ,2 ,3 ,4 ]
Zhou, Dai [1 ,2 ,3 ,4 ]
Zhao, Yongsheng [1 ,2 ]
Bao, Yan [1 ,2 ,3 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Minist Educ, Key Lab Hydrodynam, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, Shanghai Key Lab Digital Maintenance Bldg & Infra, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Regional wind speed prediction; CNN; LSTM; Temporal series fitness; Spatial distribution; NEURAL-NETWORK; PREDICTION; DECOMPOSITION; EMISSIONS; IMPACT; STATE; FARM;
D O I
10.1016/j.enconman.2021.114451
中图分类号
O414.1 [热力学];
学科分类号
摘要
Short-term wind speed forecast is of great importance to wind farm regulation and its early warning. Previous studies mainly focused on the prediction at a single location but few extended the task to 2-D wind plane. In this study, a novel deep learning model was proposed for a 2-D regional wind speed forecast, using the combination of the auto-encoder of convolutional neural network (CNN) and the long short-term memory unit (LSTM). The 12-hidden-layer deep CNN was adopted to encode the high dimensional 2-D input into the embedding vector and inversely, to decode such latent representation after it was predicted by the LSTM module based on historical data. The model performance was compared with parallel models under different criteria, including MAE, RMSE and R2, all showing stable and considerable enhancements. For instance, the overall MAE value dropped to 0.35 m/s for the current model, which is 32.7%, 28.8% and 18.9% away from the prediction results using the persistence, basic ANN and LSTM model. Moreover, comprehensive discussions were provided from both temporal and spatial views of analysis, revealing that the current model can not only offer an accurate wind speed forecast along timeline (R2 equals to 0.981), but also give a distinct estimation of the spatial wind speed distribution in 2-D wind farm.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A Deep Learning-Based Hybrid CNN-LSTM Model for Location-Aware Web Service Recommendation
    Pandey, Ankur
    Mannepalli, Praveen Kumar
    Gupta, Manish
    Dangi, Ramraj
    Choudhary, Gaurav
    NEURAL PROCESSING LETTERS, 2024, 56 (05)
  • [42] A CNN-LSTM-LightGBM based short-term wind power prediction method based on attention mechanism
    Ren, Juan
    Yu, Zhongping
    Gao, Guiliang
    Yu, Guokang
    Yu, Jin
    ENERGY REPORTS, 2022, 8 : 437 - 443
  • [43] Non-intrusive load decomposition based on CNN-LSTM hybrid deep learning model
    Zhou, Xinxin
    Feng, Jingru
    Li, Yang
    ENERGY REPORTS, 2021, 7 : 5762 - 5771
  • [44] Carbon trading price forecasting based on parameter optimization VMD and deep network CNN-LSTM model
    Ling, Meijun
    Cao, Guangxi
    INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING, 2024, 11 (01)
  • [45] Short-term forecast of wind speed through mathematical models
    Ferreira, Moniki
    Santos, Alexandre
    Lucio, Paulo
    ENERGY REPORTS, 2019, 5 : 1172 - 1184
  • [46] Air quality index forecast in Beijing based on CNN-LSTM multi-model
    Zhang, Jiaxuan
    Li, Shunyong
    CHEMOSPHERE, 2022, 308
  • [47] SHORT-TERM WIND POWER COMBINATION FORECAST BASED ON MULTI-OBJECTIVE OPTIMIZATION AND DEEP LEARNING
    Hu, Jiaqiu
    Zhuo, Yixin
    Tang, Jian
    Meng, Wenchuan
    Qi, Huanxing
    Liu, Luning
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2025, 46 (02): : 615 - 623
  • [48] Multi 2D-CNN-based model for short-term PV power forecast embedded with Laplacian Attention
    Nguyen-Duc, Tuyen
    Do-Dinh, Hieu
    Fujita, Goro
    Tran-Thanh, Son
    ENERGY REPORTS, 2024, 12 : 2086 - 2096
  • [49] Short-term load forecasting based on deep learning model
    Kim D.
    Jin-Jo H.
    Park J.-B.
    Roh J.H.
    Kim M.S.
    Transactions of the Korean Institute of Electrical Engineers, 2019, 68 (09) : 1094 - 1099
  • [50] Short-Term Water Demand Forecast Based on Deep Learning Method
    Guo, Guancheng
    Liu, Shuming
    Wu, Yipeng
    Li, Junyu
    Zhou, Ren
    Zhu, Xiaoyun
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 2018, 144 (12)