The simultaneous approximation of polynomial roots

被引:6
作者
Niell, AM [1 ]
机构
[1] Natl Univ Cordoba, Fac Matemat Astron & Fis, RA-5000 Cordoba, Argentina
关键词
polynomial roots; Weierstrass method; Newton-type method; iterative approximation of roots; simultaneous approximation;
D O I
10.1016/S0898-1221(01)85002-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give new proofs of some known results concerning an iterative method of Newton type for the simultaneous calculation of all roots of a polynomial, originally proposed by Weierstrass [1]. The previously known local convergence analysis of the method is simplified and sharpened. We also propose a modified method with improved convergence properties. Global convergence of both methods is touched upon briefly. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [21] On nonlinear simultaneous approximation problems
    Pakhrou, Tijani
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2011, 105 (02) : 305 - 313
  • [22] Simultaneous approximation by greedy algorithms
    Leviatan, D.
    Temlyakov, V. N.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 25 (1-3) : 73 - 90
  • [23] Suitable norms for simultaneous approximation
    Benitez, C
    Fernandez, M
    Soriano, ML
    ACTA MATHEMATICA HUNGARICA, 1997, 74 (04) : 333 - 343
  • [24] Simultaneous approximation by greedy algorithms
    D. Leviatan
    V. N. Temlyakov
    Advances in Computational Mathematics, 2006, 25 : 73 - 90
  • [25] Interpolation and best simultaneous approximation
    Cuenya, Hector H.
    Levis, Fabian E.
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (09) : 1577 - 1587
  • [26] Simultaneous approximation of translation operators
    Tsirivas, N.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, (51): : 461 - 471
  • [27] Simultaneous approximation in positive characteristic
    Caulk, S
    Schmidt, WM
    MONATSHEFTE FUR MATHEMATIK, 2000, 131 (01): : 15 - 28
  • [28] Simultaneous approximation of the Feller operator
    Anastassiou, GA
    Zhou, M
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (10) : 31 - 44
  • [29] Quantum Phase Estimation Algorithm for Finding Polynomial Roots
    Tansuwannont, Theerapat
    Limkumnerd, Surachate
    Suwanna, Sujin
    Kalasuwan, Pruet
    OPEN PHYSICS, 2019, 17 (01): : 839 - 849
  • [30] A note on the convergence of the Weierstrass sor method for polynomial roots
    Petkovic, MS
    Kjurkchiev, N
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 80 (01) : 163 - 168