A domain damage index to prioritizing the pathogenicity of missense variants

被引:0
|
作者
Chen, Hua-Chang [1 ,2 ]
Wang, Jing [1 ,2 ]
Liu, Qi [1 ,2 ]
Shyr, Yu [1 ,2 ]
机构
[1] Vanderbilt Univ, Med Ctr, Dept Biostat, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Med Ctr, Ctr Quantitat Sci, Nashville, TN USA
关键词
conservation; constrain; disease-causing; missense variants; pathogenicity prediction; protein domain; variant prioritization; FUNCTIONAL ANNOTATION; NONSYNONYMOUS SNVS; PROTEIN FUNCTION; MUTATIONS; DISEASE; CONSEQUENCES; ELEMENTS; PREDICT; IMPACT; SCORE;
D O I
10.1002/humu.24269
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Prioritizing causal variants is one major challenge for the clinical application of sequencing data. Prompted by the observation that 74.3% of missense pathogenic variants locate in protein domains, we developed an approach named domain damage index (DDI). DDI identifies protein domains depleted of rare missense variations in the general population, which can be further used as a metric to prioritize variants. DDI is significantly correlated with phylogenetic conservation, variant-level metrics, and reported pathogenicity. DDI achieved great performance for distinguishing pathogenic variants from benign ones in three benchmark datasets. The combination of DDI with the other two best approaches improved the performance of each individual method considerably, suggesting DDI provides a powerful and complementary way of variant prioritization.
引用
收藏
页码:1503 / 1517
页数:15
相关论文
共 50 条
  • [41] Assessing predictions on fitness effects of missense variants in calmodulin
    Zhang, Jing
    Kinch, Lisa N.
    Cong, Qian
    Katsonis, Panagiotis
    Lichtarge, Olivier
    Savojardo, Castrense
    Babbi, Giulia
    Martelli, Pier Luigi
    Capriotti, Emidio
    Casadio, Rita
    Garg, Aditi
    Pal, Debnath
    Weile, Jochen
    Sun, Song
    Verby, Marta
    Roth, Frederick P.
    Grishin, Nick, V
    HUMAN MUTATION, 2019, 40 (09) : 1463 - 1473
  • [42] KVarPredDB: a database for predicting pathogenicity of missense sequence variants of keratin genes associated with genodermatoses
    Ying, Yuyi
    Lu, Lu
    Banerjee, Santasree
    Xu, Lizhen
    Zhao, Qiang
    Wu, Hao
    Li, Ruiqi
    Xu, Xiao
    Yu, Hua
    Neculai, Dante
    Xi, Yongmei
    Yang, Fan
    Qin, Jiale
    Li, Chen
    HUMAN GENOMICS, 2020, 14 (01)
  • [43] Enhancing Missense Variant Pathogenicity Prediction with MissenseNet: Integrating Structural Insights and ShuffleNet-Based Deep Learning Techniques
    Liu, Jing
    Chen, Yingying
    Huang, Kai
    Guan, Xiao
    BIOMOLECULES, 2024, 14 (09)
  • [44] Determining the pathogenicity of CFTR missense variants: Multiple comparisons of in silico Tpredictors and variant annotation databases
    Michels, Marcus
    Matte, Ursula
    Fraga, Lucas Rosa
    Branco Mancuso, Aline Castello
    Ligabue-Braun, Rodrigo
    Rodrigues Berneira, Elias Figueroa
    Siebert, Marina
    Sanseverino, Maria Teresa
    GENETICS AND MOLECULAR BIOLOGY, 2019, 42 (03) : 560 - 570
  • [45] PdmIRD: missense variants pathogenicity prediction for inherited retinal diseases in a disease-specific manner
    Zeng, Bing
    Liu, Dong Cheng
    Huang, Jian Guo
    Xia, Xiao Bo
    Qin, Bo
    HUMAN GENETICS, 2024, 143 (03) : 331 - 342
  • [46] Comparison of pathogenicity prediction tools on missense variants in RYR1 and CACNA1S associated with malignant hyperthermia
    Schiemann, A. H.
    Stowell, K. M.
    BRITISH JOURNAL OF ANAESTHESIA, 2016, 117 (01) : 124 - 128
  • [47] A practical guide to filtering and prioritizing genetic variants
    Dashti, Mahjoubeh Jalali Sefid
    Gamieldien, Junaid
    BIOTECHNIQUES, 2017, 62 (01) : 18 - +
  • [48] Development of pathogenicity predictors specific for variants that do not comply with clinical guidelines for the use of computational evidence
    Alvarez de la Campa, Elena
    Padilla, Natalia
    de la Cruz, Xavier
    BMC GENOMICS, 2017, 18
  • [49] New insights into the pathogenicity of non-synonymous variants through multi-level analysis
    Sun, Hong
    Yu, Guangjun
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [50] Calibration of Multiple In Silico Tools for Predicting Pathogenicity of Mismatch Repair Gene Missense Substitutions
    Thompson, Bryony A.
    Greenblatt, Marc S.
    Vallee, Maxime P.
    Herkert, Johanna C.
    Tessereau, Chloe
    Young, Erin L.
    Adzhubey, Ivan A.
    Li, Biao
    Bell, Russell
    Feng, Bingjian
    Mooney, Sean D.
    Radivojac, Predrag
    Sunyaev, Shamil R.
    Frebourg, Thierry
    Hofstra, Robert M. W.
    Sijmons, Rolf H.
    Boucher, Ken
    Thomas, Alun
    Goldgar, David E.
    Spurdle, Amanda B.
    Tavtigian, Sean V.
    HUMAN MUTATION, 2013, 34 (01) : 255 - 265