A domain damage index to prioritizing the pathogenicity of missense variants

被引:0
|
作者
Chen, Hua-Chang [1 ,2 ]
Wang, Jing [1 ,2 ]
Liu, Qi [1 ,2 ]
Shyr, Yu [1 ,2 ]
机构
[1] Vanderbilt Univ, Med Ctr, Dept Biostat, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Med Ctr, Ctr Quantitat Sci, Nashville, TN USA
关键词
conservation; constrain; disease-causing; missense variants; pathogenicity prediction; protein domain; variant prioritization; FUNCTIONAL ANNOTATION; NONSYNONYMOUS SNVS; PROTEIN FUNCTION; MUTATIONS; DISEASE; CONSEQUENCES; ELEMENTS; PREDICT; IMPACT; SCORE;
D O I
10.1002/humu.24269
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Prioritizing causal variants is one major challenge for the clinical application of sequencing data. Prompted by the observation that 74.3% of missense pathogenic variants locate in protein domains, we developed an approach named domain damage index (DDI). DDI identifies protein domains depleted of rare missense variations in the general population, which can be further used as a metric to prioritize variants. DDI is significantly correlated with phylogenetic conservation, variant-level metrics, and reported pathogenicity. DDI achieved great performance for distinguishing pathogenic variants from benign ones in three benchmark datasets. The combination of DDI with the other two best approaches improved the performance of each individual method considerably, suggesting DDI provides a powerful and complementary way of variant prioritization.
引用
收藏
页码:1503 / 1517
页数:15
相关论文
共 50 条
  • [21] Biological relevance of computationally predicted pathogenicity of noncoding variants
    Liu, Li
    Sanderford, Maxwell D.
    Patel, Ravi
    Chandrashekar, Pramod
    Gibson, Greg
    Kumar, Sudhir
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [22] SIGMA leverages protein structural information to predict the pathogenicity of missense variants
    Zhao, Hengqiang
    Du, Huakang
    Zhao, Sen
    Chen, Zefu
    Li, Yaqi
    Xu, Kexin
    Liu, Bowen
    Cheng, Xi
    Wen, Wen
    Li, Guozhuang
    Chen, Guilin
    Zhao, Zhengye
    Qiu, Guixing
    Liu, Pengfei
    Zhang, Terry Jianguo
    Wu, Zhihong
    Wu, Nan
    CELL REPORTS METHODS, 2024, 4 (01):
  • [23] Phenotypic diversity, disease progression, and pathogenicity of MVK missense variants in mevalonic aciduria
    Brennenstuhl, Heiko
    Nashawi, Mohammed
    Schroeter, Julian
    Baronio, Federico
    Beedgen, Lars
    Gleich, Florian
    Jeltsch, Kathrin
    von Landenberg, Christina
    Martini, Silvia
    Simon, Anna
    Thiel, Christian
    Tsiakas, Konstantinos
    Opladen, Thomas
    Koelker, Stefan
    Hoffmann, Georg F.
    Haas, Dorothea
    JOURNAL OF INHERITED METABOLIC DISEASE, 2021, 44 (05) : 1272 - 1287
  • [24] Leveraging cancer mutation data to inform the pathogenicity classification of germline missense variants
    Haque, Bushra
    Cheerie, David
    Pan, Amy
    Curtis, Meredith
    Nalpathamkalam, Thomas
    Nguyen, Jimmy
    Salhab, Celine
    Thiruvahindrapuram, Bhooma
    Zhang, Jade
    Couse, Madeline
    Hartley, Taila
    Morrow, Michelle M.
    Price, E. Magda
    Walker, Susan
    Malkin, David
    Roth, Frederick P.
    Costain, Gregory
    PLOS GENETICS, 2025, 21 (01):
  • [25] Predicting the pathogenicity of missense variants based on protein instability to support diagnosis of patients with novel variants of ARSL
    Aoki, Eriko
    Manabe, Noriyoshi
    Ohno, Shiho
    Aoki, Taiga
    Furukawa, Jun-Ichi
    Togayachi, Akira
    Aoki-Kinoshita, Kiyoko
    Inokuchi, Jin-Ichi
    Kurosawa, Kenji
    Kaname, Tadashi
    Yamaguchi, Yoshiki
    Nishihara, Shoko
    MOLECULAR GENETICS AND METABOLISM REPORTS, 2023, 37
  • [26] Missense variants in TAF1 and developmental phenotypes: Challenges of determining pathogenicity
    Cheng, Hanyin
    Capponi, Simona
    Wakeling, Emma
    Marchi, Elaine
    Li, Quan
    Zhao, Mengge
    Weng, Chunhua
    Stefan, Piatek G.
    Ahlfors, Helena
    Kleyner, Robert
    Rope, Alan
    Lumaka, Aime
    Lukusa, Prosper
    Devriendt, Koenraad
    Vermeesch, Joris
    Posey, Jennifer E.
    Palmer, Elizabeth E.
    Murray, Lucinda
    Leon, Eyby
    Diaz, Jullianne
    Worgan, Lisa
    Mallawaarachchi, Amalia
    Vogt, Julie
    de Munnik, Sonja A.
    Dreyer, Lauren
    Baynam, Gareth
    Ewans, Lisa
    Stark, Zornitza
    Lunke, Sebastian
    Goncalves, Ana R.
    Soares, Gabriela
    Oliveira, Jorge
    Fassi, Emily
    Willing, Marcia
    Waugh, Jeff L.
    Faivre, Laurence
    Riviere, Jean-Baptiste
    Moutton, Sebastien
    Mohammed, Shehla
    Payne, Katelyn
    Walsh, Laurence
    Begtrup, Amber
    Sacoto, Maria J. Guillen
    Douglas, Ganka
    Alexander, Nora
    Buckley, Michael F.
    Mark, Paul R.
    Ades, Lesley C.
    Sandaradura, Sarah A.
    Lupski, James R.
    HUMAN MUTATION, 2020, 41 (02) : 449 - 464
  • [27] In silico comparative characterization of pharmacogenomic missense variants
    Li, Biao
    Seligman, Chet
    Thusberg, Janita
    Miller, Jackson L.
    Auer, Jim
    Whirl-Carrillo, Michelle
    Capriotti, Emidio
    Klein, Teri E.
    Mooney, Sean D.
    BMC GENOMICS, 2014, 15
  • [28] Assessment of 13 in silico pathogenicity methods on cancer-related variants
    Yazar, Metin
    Ozbek, Pemra
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 145
  • [29] Rare missense variants in the human cytosolic antibody receptor preserve antiviral function
    Zeng, Jingwei
    Slodkowicz, Greg
    James, Leo C.
    ELIFE, 2019, 8
  • [30] AI-derived comparative assessment of the performance of pathogenicity prediction tools on missense variants of breast cancer genes
    Ahmad, Rahaf M.
    Ali, Bassam R.
    Al-Jasmi, Fatma
    Al Dhaheri, Noura
    Al Turki, Saeed
    Kizhakkedath, Praseetha
    Mohamad, Mohd Saberi
    HUMAN GENOMICS, 2024, 18 (01)