A domain damage index to prioritizing the pathogenicity of missense variants

被引:0
|
作者
Chen, Hua-Chang [1 ,2 ]
Wang, Jing [1 ,2 ]
Liu, Qi [1 ,2 ]
Shyr, Yu [1 ,2 ]
机构
[1] Vanderbilt Univ, Med Ctr, Dept Biostat, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Med Ctr, Ctr Quantitat Sci, Nashville, TN USA
关键词
conservation; constrain; disease-causing; missense variants; pathogenicity prediction; protein domain; variant prioritization; FUNCTIONAL ANNOTATION; NONSYNONYMOUS SNVS; PROTEIN FUNCTION; MUTATIONS; DISEASE; CONSEQUENCES; ELEMENTS; PREDICT; IMPACT; SCORE;
D O I
10.1002/humu.24269
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Prioritizing causal variants is one major challenge for the clinical application of sequencing data. Prompted by the observation that 74.3% of missense pathogenic variants locate in protein domains, we developed an approach named domain damage index (DDI). DDI identifies protein domains depleted of rare missense variations in the general population, which can be further used as a metric to prioritize variants. DDI is significantly correlated with phylogenetic conservation, variant-level metrics, and reported pathogenicity. DDI achieved great performance for distinguishing pathogenic variants from benign ones in three benchmark datasets. The combination of DDI with the other two best approaches improved the performance of each individual method considerably, suggesting DDI provides a powerful and complementary way of variant prioritization.
引用
收藏
页码:1503 / 1517
页数:15
相关论文
共 50 条
  • [1] REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants
    Ioannidis, Nilah M.
    Rothstein, Joseph H.
    Pejaver, Vikas
    Middha, Sumit
    McDonnell, Shannon K.
    Baheti, Saurabh
    Musolf, Anthony
    Li, Qing
    Holzinger, Emily
    Karyadi, Danielle
    Cannon-Albright, Lisa A.
    Teerlink, Craig C.
    Stanford, Janet L.
    Isaacs, William B.
    Xu, Jianfeng
    Cooney, Kathleen A.
    Lange, Ethan M.
    Schleutker, Johanna
    Carpten, John D.
    Powell, Isaac J.
    Cussenot, Olivier
    Cancel-Tassin, Geraldine
    Giles, Graham G.
    MacInnis, Robert J.
    Maier, Christiane
    Hsieh, Chih-Lin
    Wiklund, Fredrik
    Catalona, William J.
    Foulkes, William D.
    Mandal, Diptasri
    Eeles, Rosalind A.
    Kote-Jarai, Zsofia
    Bustamante, Carlos D.
    Schaid, Daniel J.
    Hastie, Trevor
    Ostrander, Elaine A.
    Bailey-Wilson, Joan E.
    Radivojac, Predrag
    Thibodeau, Stephen N.
    Whittemore, Alice S.
    Sieh, Weiva
    AMERICAN JOURNAL OF HUMAN GENETICS, 2016, 99 (04) : 877 - 885
  • [2] Improved pathogenicity prediction for rare human missense variants
    Wu, Yingzhou
    Li, Roujia
    Sun, Song
    Weile, Jochen
    Roth, Frederick P.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2021, 108 (10) : 1891 - 1906
  • [3] LYRUS: a machine learning model for predicting the pathogenicity of missense variants
    Lai, Jiaying
    Yang, Jordan
    Gamsiz Uzun, Ece D.
    Rubenstein, Brenda M.
    Sarkar, Indra Neil
    BIOINFORMATICS ADVANCES, 2022, 2 (01):
  • [4] mvPPT: A Highly Efficient and Sensitive Pathogenicity Prediction Tool for Missense Variants
    Tong, Shi-Yuan
    Fan, Ke
    Zhou, Zai-Wei
    Liu, Lin-Yun
    Zhang, Shu-Qing
    Fu, Yinghui
    Wang, Guang-Zhong
    Zhu, Ying
    Yu, Yong-Chun
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (02) : 414 - 426
  • [5] Performance of Mutation Pathogenicity Prediction Methods on Missense Variants
    Thusberg, Janita
    Olatubosun, Ayodeji
    Vihinen, Mauno
    HUMAN MUTATION, 2011, 32 (04) : 358 - 368
  • [6] The human gene damage index as a gene-level approach to prioritizing exome variants
    Itan, Yuval
    Shang, Lei
    Boisson, Bertrand
    Patin, Etienne
    Bolze, Alexandre
    Moncada-Velez, Marcela
    Scott, Eric
    Ciancanelli, Michael J.
    Lafaille, Fabien G.
    Markle, Janet G.
    Martinez-Barricarte, Ruben
    de Jong, Sarah Jill
    Kong, Xiao-Fei
    Nitschke, Patrick
    Belkadi, Aziz
    Bustamante, Jacinta
    Puel, Anne
    Boisson-Dupuis, Stephanie
    Stenson, Peter D.
    Gleeson, Joseph G.
    Cooper, David N.
    Quintana-Murci, Lluis
    Claverie, Jean-Michel
    Zhang, Shen-Ying
    Abel, Laurent
    Casanova, Jean-Laurent
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (44) : 13615 - 13620
  • [7] Insights into the pathogenicity of missense variants in the forkhead domain of FOX proteins underlying Mendelian disorders
    Bermudez-Guzman, Luis
    Veitia, Reiner A.
    HUMAN GENETICS, 2021, 140 (07) : 999 - 1010
  • [8] Analysis of missense variants in the human genome reveals widespread gene-specific clustering and improves prediction of pathogenicity
    Quinodoz, Mathieu
    Peter, Virginie G.
    Cisarova, Katarina
    Royer-Bertrand, Beryl
    Stenson, Peter D.
    Cooper, David N.
    Unger, Sheila
    Superti-Furga, Andrea
    Rivolta, Carlo
    AMERICAN JOURNAL OF HUMAN GENETICS, 2022, 109 (03) : 457 - 470
  • [9] Performance evaluation of pathogenicity-computation methods for missense variants
    Li, Jinchen
    Zhao, Tingting
    Zhang, Yi
    Zhang, Kun
    Shi, Leisheng
    Chen, Yun
    Wang, Xingxing
    Sun, Zhongsheng
    NUCLEIC ACIDS RESEARCH, 2018, 46 (15) : 7793 - 7804
  • [10] Rhapsody: predicting the pathogenicity of human missense variants
    Ponzoni, Luca
    Penaherrera, Daniel A.
    Oltvai, Zoltan N.
    Bahar, Ivet
    BIOINFORMATICS, 2020, 36 (10) : 3084 - 3092