Ulinastatin Alleviates Rhabdomyolysis-Induced Acute Kidney Injury by Suppressing Inflammation and Apoptosis via Inhibiting TLR4/NF-κB Signaling Pathway

被引:18
|
作者
Wang, Jinxiang [1 ,2 ]
Xu, Guowu [1 ,2 ]
Jin, Heng [1 ,2 ]
Chai, Yanfen [2 ]
Yang, Xinyue [3 ]
Liu, Ziquan [1 ,3 ]
Hou, Shike [1 ,3 ]
Fan, Haojun [1 ,3 ]
机构
[1] Tianjin Univ, Wenzhou Safety Emergency Inst, Wenzhou 325000, Zhejiang, Peoples R China
[2] Tianjin Med Univ, Dept Emergency Med, Gen Hosp, Tianjin 300052, Peoples R China
[3] Tianjin Univ, Inst Disaster & Emergency Med, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
ulinastatin; rhabdomyolysis; acute kidney injury; TLR4/NF-kappa B; inflammation; apoptosis; PROTECTS; CELLS;
D O I
10.1007/s10753-022-01675-4
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Acute kidney injury (AKI) is an important complication of rhabdomyolysis (RM), but there is lack of effective treatments. Ulinastatin (UTI) is a broad-spectrum serine protease inhibitor isolated and purified from human urine with strong anti-inflammatory and cytoprotective actions. The aim of this research was to investigate the effect and potential mechanism of UTI on RM-induced AKI (RM-AKI). We established RM-induced AKI model and myoglobin (Mb)-stimulated NRK-52E cell model. In vivo, twenty-four rats were randomly divided into three groups (n = 8): control, RM-AKI, and RM-AKI + UTI. In vitro, the NRK-52E cells were divided into six groups according to the different treatment method. Mb-stimulated NRK-52E cells were treated with UTI or si-TLR4 transfection to characterize the mechanisms of UTI in RM-AKI. Indicators of the kidney injury, cell viability, cell cycle, oxidative stress, inflammation, apoptosis, and TLR4/NF-kappa B signaling pathway were assessed. In vivo and in vitro, UTI significantly decreased the expression of TLR4 and p65. In vivo, UTI significantly improved renal function and reduced inflammatory reaction and kidney injury. In vitro, UTI protected NRK-52E cells from Mb stimulation by suppressing cell cytotoxicity, cell cycle inhibition, overproduction of ROS, inflammation, and apoptosis. Additionally, UTI played a protective role by downregulating the TLR4 expression. The results indicate that UTI alleviates RM-AKI by suppressing the inflammatory response and apoptosis via inhibiting TLR4/NF-kappa B signaling pathway. Our study provides a new mechanism for the protective effect of UTI on RM-AKI.
引用
收藏
页码:2052 / 2065
页数:14
相关论文
共 50 条
  • [31] Baicalin Alleviates Silica-Induced Lung Inflammation and Fibrosis by Inhibiting TLR4/NF-κB Pathway in Rats
    Zhang, Yuanyuan
    Liu, Fang
    Jia, Qiang
    Zheng, Liping
    Tang, Qiong
    Sai, Linlin
    Zhang, Wei
    Du, Zhongjun
    Peng, Cheng
    Bo, Cunxiang
    Zhang, Fang
    PHYSIOLOGICAL RESEARCH, 2023, 72 (02) : 221 - 233
  • [32] MicroRNA-27a alleviates LPS-induced acute lung injury in mice via inhibiting inFLammation and apoptosis through modulating TLR4/MyD88/NF-κB pathway
    Ju, MinJie
    Liu, BoFei
    He, HongYu
    Gu, ZhunYong
    Liu, YiMei
    Su, Ying
    Zhu, DuMing
    Cang, Jing
    Luo, Zhe
    CELL CYCLE, 2018, 17 (16) : 2001 - 2018
  • [33] Chlorogenic Acid Attenuates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting TLR4/NF-κB Signal Pathway
    Han-Yang Ye
    Jian Jin
    Ling-Wei Jin
    Yan Chen
    Zhi-Hong Zhou
    Zhan-Yuan Li
    Inflammation, 2017, 40 : 523 - 529
  • [34] Pentoxifylline and thiamine ameliorate rhabdomyolysis-induced acute kidney injury in rats via suppressing TLR4/NF-ΚB and NLRP-3/caspase-1/gasdermin mediated-pyroptosis
    Al-Kharashi, Layla
    Attia, Hala
    Alsaffi, Aljazzy
    Almasri, Toka
    Arafa, Maha
    Hasan, Iman
    Alajami, Hanaa
    Ali, Rehab
    Badr, Amira
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2023, 461
  • [35] Gentiopicroside ameliorates lipopolysaccharide-induced acute kidney injury by inhibiting TLR4/NF-?B signaling in mice model
    Shareef, Saja Majeed
    Kathem, Sarmed Hashim
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 (04) : 135 - 145
  • [36] Chlorogenic Acid Attenuates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting TLR4/NF-κB Signal Pathway
    Ye, Han-Yang
    Jin, Jian
    Jin, Ling-Wei
    Chen, Yan
    Zhou, Zhi-Hong
    Li, Zhan-Yuan
    INFLAMMATION, 2017, 40 (02) : 523 - 529
  • [37] GAB1 alleviates septic lung injury by inhibiting the TLR4/NF-κB pathway
    Sun, Lihua
    Zhu, Hongchao
    Zhang, Kui
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2022, 49 (01) : 94 - 103
  • [38] Maslinic Acid Attenuates Ischemia/Reperfusion-Induced Acute Kidney Injury by Suppressing Inflammation and Apoptosis Through Inhibiting NF-?B and MAPK Signaling Pathway
    Sun, Wenjuan
    Choi, Hong Sang
    Kim, Chang Seong
    Bae, Eun Hui
    Ma, Seong Kwon
    Kim, Soo Wan
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [39] Alprostadil alleviates liver injury in septic rats via TLR4/NF-κB pathway
    Wang, M.
    Cai, X-F
    Zhang, S-M
    Xia, S-Y
    Du, W-H
    Ma, Y-L
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2021, 25 (03) : 1592 - 1599
  • [40] microRNA-182-5p alleviates spinal cord injury by inhibiting inflammation and apoptosis through modulating the TLR4/NF-κB pathway
    Zhang, Junfeng
    Wu, Yaochi
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2018, 11 (06): : 2948 - 2958