Sublimation growth of bulk 3C-SiC using 3C-SiC-on-Si (100) seeding layers

被引:17
作者
Schuh, P. [1 ]
Schoeler, M. [1 ]
Wilhelm, M. [1 ]
Syvajarvi, M. [2 ]
Litrico, G. [5 ]
La Via, F. [3 ]
Mauceri, M. [4 ]
Wellmann, P. J. [1 ]
机构
[1] FAU Erlangen Nurnberg, Mat Dept I Meet 6, Crystal Growth Lab, Martensstr 7, D-91058 Erlangen, Germany
[2] Linkoping Univ, Semicond Mat Div, Dept Phys Chem & Biol IFM, S-51883 Linkoping, Sweden
[3] CNR, IMM, Sez Catania, Stradale Primosole 50, I-95121 Catania, Italy
[4] Lpe SPA, Sedicesima Str, I-95121 Catania, Italy
[5] Lab Nazl Sud, Via S Sofia 62, I-95123 Catania, Italy
基金
欧盟地平线“2020”;
关键词
3C-SiC; Quasi-bulk; Sublimation epitaxy; DPB free; Single crystalline; Stacking faults; INTERFACE STATE DENSITY; CUBIC SILICON-CARBIDE; FABRICATION; SUBSTRATE; MECHANISM;
D O I
10.1016/j.jcrysgro.2017.09.002
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
We have developed a transfer process of 3C-SiC-on-Si (100) seeding layers grown by chemical vapor deposition onto a poly-or single-crystalline SiC carrier. Applying subsequent sublimation growth of SiC in [100] direction resulting in large area crystals (up to approximate to 11 cm(2)) with a thickness of up to approximately 850 lm. Raman spectroscopy, Laue X-ray diffraction and electron-backscattering-diffraction revealed a high material quality in terms of single-crystallinity without secondary polytype inclusions, antiphase boundaries or double positioning grain boundaries. Defects in the bulk grown 3C-SiC, like protrusions with surrounding stressed areas, stem from the epitaxial seeding layer. The presented concept using 3C-SiC-on-Si seeding layers reveals a path for the growth of bulk 3C-SiC crystals. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:159 / 162
页数:4
相关论文
共 27 条
[1]   Interface state density evaluation of high quality hetero-epitaxial 3C-SiC(001) for high-power MOSFET applications [J].
Anzalone, R. ;
Privitera, S. ;
Camarda, M. ;
Alberti, A. ;
Mannino, G. ;
Fiorenza, P. ;
Di Franco, S. ;
La Via, F. .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2015, 198 :14-19
[2]   Advanced Residual Stress Analysis and FEM Simulation on Heteroepitaxial 3C-SiC for MEMS Application [J].
Anzalone, R. ;
D'Arrigo, G. ;
Camarda, M. ;
Locke, C. ;
Saddow, S. E. ;
La Via, F. .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2011, 20 (03) :745-752
[3]   Prospects for 3C-SiC bulk crystal growth [J].
Chaussende, D. ;
Mercier, F. ;
Boulle, A. ;
Conchon, F. ;
Soueidan, M. ;
Ferro, G. ;
Mantzari, A. ;
Andreadou, A. ;
Polychroniadis, E. K. ;
Balloud, C. ;
Juillaguet, S. ;
Camassel, J. ;
Pons, M. .
JOURNAL OF CRYSTAL GROWTH, 2008, 310 (05) :976-981
[4]  
Chung G., 2007, B KOREAN CHEM SOC, V288
[5]   Sublimation growth of thick freestanding 3C-SiC using CVD-templates on silicon as seeds [J].
Hens, P. ;
Jokubavicius, V. ;
Liljedahl, R. ;
Wagner, G. ;
Yakimova, R. ;
Wellmann, P. ;
Syvajarvi, M. .
MATERIALS LETTERS, 2012, 67 (01) :300-302
[6]  
Jayatirtha HN, 1996, INST PHYS CONF SER, V142, P61
[7]   Improvement in the growth rate of cubic silicon carbide bulk single crystals grown by the sublimation method [J].
Jayatirtha, HN ;
Spencer, MG ;
Taylor, C ;
Greg, W .
JOURNAL OF CRYSTAL GROWTH, 1997, 174 (1-4) :662-668
[8]   Single Domain 3C-SiC Growth on Off-Oriented 4H-SiC Substrates [J].
Jokubavicius, Valdas ;
Yazdi, Gholam R. ;
Liljedahl, Rickard ;
Ivanov, Ivan G. ;
Sun, Jianwu ;
Liu, Xinyu ;
Schuh, Philipp ;
Wilhelm, Martin ;
Wellmann, Peter ;
Yakimova, Rositsa ;
Syvajarvi, Mikael .
CRYSTAL GROWTH & DESIGN, 2015, 15 (06) :2940-2947
[9]   Lateral Enlargement Growth Mechanism of 3C-SiC on Off-Oriented 4H-SiC Substrates [J].
Jokubavicius, Valdas ;
Yazdi, G. Reza ;
Liljedahl, Rickard ;
Ivanov, Ivan G. ;
Yakimova, Rositsa ;
Syvajarvi, Mikael .
CRYSTAL GROWTH & DESIGN, 2014, 14 (12) :6514-6520
[10]   High-temperature nucleation of cubic silicon carbide on (0001) hexagonal-SiC nominal surfaces [J].
Latu-Romain, Laurence ;
Chaussende, Didier ;
Pons, Michel .
CRYSTAL GROWTH & DESIGN, 2006, 6 (12) :2788-2794