Global relaxation and nonrelativistic limit of nonisentropic Euler-Maxwell systems

被引:0
|
作者
Chao, Na [1 ]
Yang, Yongfu [1 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 211100, Peoples R China
基金
中国国家自然科学基金;
关键词
compactness and convergence; energy estimate; nonisentropic Euler-Maxwell system; uniform global-in-time smooth solution; HYDRODYNAMIC MODELS; SMOOTH SOLUTIONS; CAUCHY-PROBLEM; CONVERGENCE; EQUATIONS; HIERARCHY; EXISTENCE;
D O I
10.1002/mma.6305
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to investigate smooth solutions to Cauchy (or periodic) problem for a nonisentropic Euler-Maxwell system with small parameters. For initial data close to constant equilibrium states, we prove the global-in-time convergence of the Euler-Maxwell system as parameters go to zero. The limit systems are the drift-diffusion system and the nonisentropic Euler-Poisson system, respectively.
引用
收藏
页码:5692 / 5707
页数:16
相关论文
共 50 条