Global relaxation and nonrelativistic limit of nonisentropic Euler-Maxwell systems

被引:0
|
作者
Chao, Na [1 ]
Yang, Yongfu [1 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 211100, Peoples R China
基金
中国国家自然科学基金;
关键词
compactness and convergence; energy estimate; nonisentropic Euler-Maxwell system; uniform global-in-time smooth solution; HYDRODYNAMIC MODELS; SMOOTH SOLUTIONS; CAUCHY-PROBLEM; CONVERGENCE; EQUATIONS; HIERARCHY; EXISTENCE;
D O I
10.1002/mma.6305
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to investigate smooth solutions to Cauchy (or periodic) problem for a nonisentropic Euler-Maxwell system with small parameters. For initial data close to constant equilibrium states, we prove the global-in-time convergence of the Euler-Maxwell system as parameters go to zero. The limit systems are the drift-diffusion system and the nonisentropic Euler-Poisson system, respectively.
引用
收藏
页码:5692 / 5707
页数:16
相关论文
共 50 条
  • [31] GLOBAL STABILITY OF LARGE STEADY-STATES FOR AN ISENTROPIC EULER-MAXWELL SYSTEM IN R3
    Liu, Cunming
    Guo, Zuji
    Peng, Yue-Jun
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (07) : 1841 - 1860
  • [32] Approximations of Euler-Maxwell systems by drift-diffusion equations through zero-relaxation limits near the non-constant equilibrium
    Jin, Rui
    Li, Yachun
    Zhao, Liang
    SCIENCE CHINA-MATHEMATICS, 2024, : 1051 - 1078
  • [33] Darcy's law and diffusion for a two-fluid Euler-Maxwell system with dissipation
    Duan, Renjun
    Liu, Qingqing
    Zhu, Changjiang
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (11) : 2089 - 2151
  • [34] Decay estimates of solutions to the bipolar non-isentropic compressible Euler-Maxwell system
    Tan, Zhong
    Wang, Yong
    Tong, Leilei
    NONLINEARITY, 2017, 30 (10) : 3743 - 3772
  • [35] Global solutions of the Euler-Maxwell two-fluid system in 3D
    Guo, Yan
    Ionescu, Alexandru D.
    Pausader, Benoit
    ANNALS OF MATHEMATICS, 2016, 183 (02) : 377 - 498
  • [36] Relaxation-time limit in the multi-dimensional bipolar nonisentropic Euler-Poisson systems
    Li, Yeping
    Zhou, Zhiming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (10) : 3546 - 3566
  • [37] Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system
    Feng, Yue-Hong
    Wang, Shu
    Kawashima, Shuichi
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (14) : 2851 - 2884
  • [38] Asymptotic Stability of the Compressible Euler-Maxwell Equations to Euler-Poisson Equations
    Liu, Qingqing
    Yin, Haiyan
    Zhu, Changjiang
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (04) : 1085 - 1108
  • [39] The non-relativistic limit of Euler-Maxwell equations for two-fluid plasma
    Yang, Jianwei
    Wang, Shu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) : 1829 - 1840
  • [40] Stability of non-constant equilibrium solutions for two-fluid Euler-Maxwell systems
    Feng, Yue-Hong
    Peng, Yue-Jun
    Wang, Shu
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 26 : 372 - 390