Global relaxation and nonrelativistic limit of nonisentropic Euler-Maxwell systems

被引:0
|
作者
Chao, Na [1 ]
Yang, Yongfu [1 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 211100, Peoples R China
基金
中国国家自然科学基金;
关键词
compactness and convergence; energy estimate; nonisentropic Euler-Maxwell system; uniform global-in-time smooth solution; HYDRODYNAMIC MODELS; SMOOTH SOLUTIONS; CAUCHY-PROBLEM; CONVERGENCE; EQUATIONS; HIERARCHY; EXISTENCE;
D O I
10.1002/mma.6305
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to investigate smooth solutions to Cauchy (or periodic) problem for a nonisentropic Euler-Maxwell system with small parameters. For initial data close to constant equilibrium states, we prove the global-in-time convergence of the Euler-Maxwell system as parameters go to zero. The limit systems are the drift-diffusion system and the nonisentropic Euler-Poisson system, respectively.
引用
收藏
页码:5692 / 5707
页数:16
相关论文
共 50 条
  • [21] Convergence rates in zero-relaxation limits for Euler-Maxwell and Euler-Poisson systems
    Li, Yachun
    Peng, Yue-Jun
    Zhao, Liang
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 154 : 185 - 211
  • [22] Diffusive relaxation limits of compressible Euler-Maxwell equations
    Xu, Jiang
    Xu, Qingrong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (01) : 135 - 148
  • [23] Global convergence rates in zero-relaxation limits for non-isentropic Euler-Maxwell equations
    Feng, Yue-Hong
    Li, Rui
    Mei, Ming
    Wang, Shu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 414 : 372 - 404
  • [24] The Euler-Maxwell System for Electrons: Global Solutions in 2D
    Deng, Yu
    Ionescu, Alexandru D.
    Pausader, Benoit
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (02) : 771 - 871
  • [25] Global solutions to the bipolar non-isentropic Euler-Maxwell system in the Besov framework
    Zhao, Shiqiang
    Zhang, Kaijun
    APPLICABLE ANALYSIS, 2024, 103 (13) : 2410 - 2430
  • [26] Hydrodynamic limit of the Maxwell-Schrδdinger equations to the compressible Euler-Maxwell equations
    Kim, Jeongho
    Moon, Bora
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 397 : 34 - 54
  • [27] Zero-Relaxation Limits of the Non-Isentropic Euler-Maxwell System for Well/Ill-Prepared Initial Data
    Feng, Yue-Hong
    Li, Xin
    Mei, Ming
    Wang, Shu
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (05)
  • [28] The zero-energy limit and quasi-neutral limit of scaled Euler-Maxwell system and its corresponding limiting models
    Mahmood, Tariq
    AIMS MATHEMATICS, 2019, 4 (03): : 910 - 927
  • [29] From quantum Euler-Maxwell equations to incompressible Euler equations
    Yang, Jianwei
    Ju, Zhiping
    APPLICABLE ANALYSIS, 2015, 94 (11) : 2201 - 2210
  • [30] GLOBAL WELL-POSEDNESS IN CRITICAL BESOV SPACES FOR TWO-FLUID EULER-MAXWELL EQUATIONS
    Xu, Jiang
    Xiong, Jun
    Kawashima, Shuichi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (03) : 1422 - 1447