Global relaxation and nonrelativistic limit of nonisentropic Euler-Maxwell systems

被引:0
|
作者
Chao, Na [1 ]
Yang, Yongfu [1 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 211100, Peoples R China
基金
中国国家自然科学基金;
关键词
compactness and convergence; energy estimate; nonisentropic Euler-Maxwell system; uniform global-in-time smooth solution; HYDRODYNAMIC MODELS; SMOOTH SOLUTIONS; CAUCHY-PROBLEM; CONVERGENCE; EQUATIONS; HIERARCHY; EXISTENCE;
D O I
10.1002/mma.6305
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to investigate smooth solutions to Cauchy (or periodic) problem for a nonisentropic Euler-Maxwell system with small parameters. For initial data close to constant equilibrium states, we prove the global-in-time convergence of the Euler-Maxwell system as parameters go to zero. The limit systems are the drift-diffusion system and the nonisentropic Euler-Poisson system, respectively.
引用
收藏
页码:5692 / 5707
页数:16
相关论文
共 50 条
  • [21] The rigorous derivation of unipolar Euler-Maxwell system for electrons from bipolar Euler-Maxwell system by infinity-ion-mass limit
    Zhao, Liang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (05) : 3418 - 3440
  • [22] Compressible Euler-Maxwell equations
    Chen, GQ
    Jerome, JW
    Wang, DH
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (3-5): : 311 - 331
  • [23] Initial layers and zero-relaxation limits of Euler-Maxwell equations
    Hajjej, Mohamed-Lasmer
    Peng, Yue-Jun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) : 1441 - 1465
  • [24] Hydrodynamic limit of the Maxwell-Schrδdinger equations to the compressible Euler-Maxwell equations
    Kim, Jeongho
    Moon, Bora
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 397 : 34 - 54
  • [25] Global existence of classical solutions of full Euler-Maxwell equations
    Xu, Jiang
    Xiong, Jun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (02) : 545 - 557
  • [26] The Relaxation Limits of the Two-Fluid Compressible Euler-Maxwell Equations
    Wang Shu
    Zheng Lin
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2018, 31 (01): : 17 - 28
  • [27] Global convergence rates in zero-relaxation limits for non-isentropic Euler-Maxwell equations
    Feng, Yue-Hong
    Li, Rui
    Mei, Ming
    Wang, Shu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 414 : 372 - 404
  • [28] The Euler-Maxwell System for Electrons: Global Solutions in 2D
    Deng, Yu
    Ionescu, Alexandru D.
    Pausader, Benoit
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (02) : 771 - 871
  • [29] The global convergence of non-isentropic Euler-Maxwell equations via Infinity-Ion-Mass limit
    Feng, Yue-Hong
    Li, Xin
    Wang, Shu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01):
  • [30] Relaxation-time limit in the multi-dimensional bipolar nonisentropic Euler-Poisson systems
    Li, Yeping
    Zhou, Zhiming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (10) : 3546 - 3566