Global relaxation and nonrelativistic limit of nonisentropic Euler-Maxwell systems

被引:0
|
作者
Chao, Na [1 ]
Yang, Yongfu [1 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 211100, Peoples R China
基金
中国国家自然科学基金;
关键词
compactness and convergence; energy estimate; nonisentropic Euler-Maxwell system; uniform global-in-time smooth solution; HYDRODYNAMIC MODELS; SMOOTH SOLUTIONS; CAUCHY-PROBLEM; CONVERGENCE; EQUATIONS; HIERARCHY; EXISTENCE;
D O I
10.1002/mma.6305
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to investigate smooth solutions to Cauchy (or periodic) problem for a nonisentropic Euler-Maxwell system with small parameters. For initial data close to constant equilibrium states, we prove the global-in-time convergence of the Euler-Maxwell system as parameters go to zero. The limit systems are the drift-diffusion system and the nonisentropic Euler-Poisson system, respectively.
引用
收藏
页码:5692 / 5707
页数:16
相关论文
共 50 条
  • [1] Nonrelativistic Euler-Maxwell systems
    Sever, Michael
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (08) : 2711 - 2738
  • [2] RELAXATION LIMIT AND GLOBAL EXISTENCE OF SMOOTH SOLUTIONS OF COMPRESSIBLE EULER-MAXWELL EQUATIONS
    Peng, Yue-Jun
    Wang, Shu
    Gu, Qilong
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) : 944 - 970
  • [3] The relaxation-time limit in the compressible Euler-Maxwell equations
    Yang, Jianwei
    Wang, Shu
    Zhao, Juan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) : 7005 - 7011
  • [4] Global existence and decay of solution for the nonisentropic Euler-Maxwell system with a nonconstant background density
    Wang, Weike
    Xu, Xin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [5] Convergence of the nonisentropic Euler-Maxwell equations to compressible Euler-Poisson equations
    Yang, Jianwei
    Wang, Shu
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (12)
  • [6] GLOBAL EXISTENCE FOR THE EULER-MAXWELL SYSTEM
    Germain, Pierre
    Masmoudi, Nader
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2014, 47 (03): : 469 - 503
  • [7] Compressible Euler-Maxwell limit for global smooth solutions to the Vlasov-Maxwell-Boltzmann system
    Duan, Renjun
    Yang, Dongcheng
    Yu, Hongjun
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (10): : 2157 - 2221
  • [8] A new characterization of the dissipation structure and the relaxation limit for the compressible Euler-Maxwell system
    Crin-Barat, Timothee
    Peng, Yue-Jun
    Shou, Ling-Yun
    Xu, Jiang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 289 (02)
  • [9] The diffusive relaxation limit of non-isentropic Euler-Maxwell equations for plasmas
    Yang, Jianwei
    Wang, Shu
    Li, Yong
    Luo, Dang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (01) : 343 - 353
  • [10] GLOBAL SMOOTH FLOWS FOR THE COMPRESSIBLE EULER-MAXWELL SYSTEM. THE RELAXATION CASE
    Duan, Renjun
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2011, 8 (02) : 375 - 413