Graphite Classification Based on Improved Convolution Neural Network

被引:2
|
作者
Liu, Guangjun [1 ]
Xu, Xiaoping [1 ]
Yu, Xiangjia [1 ]
Wang, Feng [2 ]
机构
[1] Xian Univ Technol, Sch Sci, Xian 710054, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
graphite; classification; transfer learning; focal loss; convolution neural network; OXIDE;
D O I
10.3390/pr9111995
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In the development of high-tech industries, graphite has become increasingly more important. The world has gradually entered the graphite era from the silicon era. In order to make good use of high-quality graphite resources, a graphite classification and recognition algorithm based on an improved convolution neural network is proposed in this paper. Based on the self-built initial data set, the offline expansion and online enhancement of the data set can effectively expand the data set and reduce the risk of deep convolution neural network overfitting. Based on the visual geometry group 16 (VGG16), residual net 34 (ResNet34), and mobile net Vision 2 (MobileNet V2), a new output module is redesigned and loaded into the full connection layer. The improved migration network enhances the generalization ability and robustness of the model; moreover, combined with the focal loss function, the superparameters of the model are modified and trained on the basis of the graphite data set. The simulation results illustrate that the recognition accuracy of the proposed method is significantly improved, the convergence speed is accelerated, and the model is more stable, which proves the feasibility and effectiveness of the proposed method.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] HEARTBEAT CLASSIFICATION ALGORITHM BASED ON ONE-DIMENSIONAL CONVOLUTION NEURAL NETWORK
    Wan, Xiangkui
    Jin, Zhiyao
    Wu, Haibo
    Liu, Junjie
    Zhu, Binru
    Xie, Honggang
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2020, 20 (07)
  • [32] Target Detection Method Based on Improved Particle Search and Convolution Neural Network
    Xu, Guowei
    Su, Xuemiao
    Liu, Wei
    Xiu, Chunbo
    IEEE ACCESS, 2019, 7 : 25972 - 25979
  • [33] VEHICLE CLASSIFICATION USING THE CONVOLUTION NEURAL NETWORK APPROACH
    Trivedi, Janak
    Devi, Mandalapu Sarada
    Dhara, Dave
    SCIENTIFIC JOURNAL OF SILESIAN UNIVERSITY OF TECHNOLOGY-SERIES TRANSPORT, 2021, 112 : 201 - 209
  • [34] Review of Deep Convolution Neural Network in Image Classification
    Al-Saffar, Ahmed Ali Mohammed
    Tao, Hai
    Talab, Mohammed Ahmed
    2017 INTERNATIONAL CONFERENCE ON RADAR, ANTENNA, MICROWAVE, ELECTRONICS, AND TELECOMMUNICATIONS (ICRAMET), 2017, : 26 - 31
  • [35] Classification of Image Spam Using Convolution Neural Network
    Metlapalli, Ayyappa Chakravarthi
    Muthusamy, Thillaikarasi
    Battula, Bhanu Prakash
    TRAITEMENT DU SIGNAL, 2022, 39 (01) : 363 - 369
  • [36] Cable incipient fault classification and identification based on optimized convolution neural network
    Wang Y.
    Sun J.
    Xiao X.
    Lu H.
    Yang X.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2020, 48 (07): : 10 - 18
  • [37] Mammographic mass detection based on convolution neural network
    Li, Yanfeng
    Chen, Houjin
    Zhang, Linlin
    Cheng, Lin
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 3850 - 3855
  • [38] An intrusion detection system based on convolution neural network
    Mo, Yanmeng
    Li, Huige
    Wang, Dongsheng
    Liu, Gaqiong
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [39] Voxel based morphometry of the human brain imaging in improved convolution neural network
    Arumuga Maria Devi T.
    Saji K.S.
    Multimedia Tools and Applications, 2025, 84 (09) : 6643 - 6663
  • [40] Classification of Defects in Welds Using a Convolution Neural Network
    Nazarov, Ravil M.
    Gizatullin, Zinnur M.
    Konstantinov, Eduard S.
    PROCEEDINGS OF THE 2021 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (ELCONRUS), 2021, : 1641 - 1644