On the skein theory of dichromatic links and invariants of finite type

被引:4
|
作者
Bataineh, Khaled [1 ]
机构
[1] Jordan Univ Sci & Technol, Irbid, Jordan
关键词
Knots and links; polynomial invariants; Vassiliev invariants; VASSILIEV INVARIANTS; SOLID TORUS; KNOTS;
D O I
10.1142/S0218216517500924
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [Dichromatic link invariants, Trans. Amer. Math. Soc. 321(1) (1990) 197-229], Hoste and Kidwell investigated the skein theory of oriented dichromatic links in S-3. They introduced a multi-variable polynomial invariant W. We use special substitutions for some of the parameters of the invariant W to show how to deduce invariants of finite type from W using partial derivatives. Then we consider the 2-component 1-trivial dichromatic links. We study the Vassiliev invariants of the 2-component in the complement of the 1-component, which is equivalent to studying Vassiliev invariants for knots in S-1 x D-2. We give combinatorial formulas for the type-zero and type-one invariants and we connect these invariants to existing invariants such as Aicardi's invariant. This provides us with a topological meaning of the first partial derivative, which is also shown to be universal as a type-one invariant.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Kauffman type invariants for tied links
    Aicardi, Francesca
    Juyumaya, Jesus
    MATHEMATISCHE ZEITSCHRIFT, 2018, 289 (1-2) : 567 - 591
  • [32] Knot invariants with multiple skein relations
    Yang, Zhiqing
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2018, 27 (02)
  • [33] Skein relations for Milnor's μ-invariants
    Polyak, Michael
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2005, 5 : 1471 - 1479
  • [34] STRONG BAND SUM AND DICHROMATIC INVARIANTS
    KAISER, U
    MANUSCRIPTA MATHEMATICA, 1992, 74 (03) : 237 - 251
  • [35] Involutory Quandles and Dichromatic Links
    Bataineh, Khaled
    Saidi, Ilham
    SYMMETRY-BASEL, 2020, 12 (01):
  • [36] Finite type invariants and fatgraphs
    Andersen, Jorgen Ellegaard
    Bene, Alex James
    Meilhan, Jean-Baptiste
    Penner, R. C.
    ADVANCES IN MATHEMATICS, 2010, 225 (04) : 2117 - 2161
  • [37] Finite type invariants for knotoids
    Manouras, Manousos
    Lambropoulou, Sofia
    Kauffman, Louis H.
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 98
  • [38] Universal skein theory for finite depth subfactor planar algebras
    Kodiyalam, Vijay
    Tupurani, Srikanth
    QUANTUM TOPOLOGY, 2011, 2 (02) : 157 - 172
  • [39] Correction to: Kauffman type invariants for tied links
    Francesca Aicardi
    Jesús Juyumaya
    Mathematische Zeitschrift, 2021, 297 (3-4) : 1953 - 1954
  • [40] Full colored HOMFLYPT invariants, composite invariants and congruence skein relations
    Chen, Qingtao
    Zhu, Shengmao
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (12) : 3307 - 3342