Fubini-Like Theorem of Real-Valued Choquet Integrals for Set-Valued Mappings

被引:1
作者
Zong, Gaofeng [1 ,2 ]
Chen, Zengjing [2 ,3 ]
Lan, Yuting [3 ]
机构
[1] Shandong Univ Finance & Econ, Sch Math & Quantitat Econ, Jinan, Peoples R China
[2] Shandong Univ Finance & Econ, Sch Math, Jinan, Peoples R China
[3] Shandong Univ Finance & Econ, Inst Financial Study, Jinan, Peoples R China
基金
美国国家科学基金会;
关键词
Fubini-like theorem; Choquet integral; comonotonic; random set; set-valued mapping; NONADDITIVE MEASURE; LUSINS THEOREM; MEASURE-SPACES; EGOROFF THEOREM; CAPACITIES; PROBABILITIES; PRODUCTS;
D O I
10.1142/S0218488516500197
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The purpose of this paper is to establish a Fubini-like theorem of real-valued Choquet integrals for set-valued mappings in the frame of capacity theory. To this, we introduce the comonotonic random sets and slice-comonotonic set-valued mappings, which to make, good use of the comonotonic additivity of Choquet integrals.
引用
收藏
页码:387 / 403
页数:17
相关论文
共 29 条