Limit cycles for cubic systems with a symmetry of order 4 and without infinite critical points

被引:0
|
作者
Alvarez, M. J. [1 ]
Gasull, A. [2 ]
Prohens, R. [1 ]
机构
[1] Univ Illes Balears, Dept Matemat & Informat, Palma de Mallorca 07122, Spain
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
关键词
planar autonomous ordinary differential equations; symmetric cubic systems; limit cycles;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study those cubic systems which are invariant under a rotation of 2 pi/4 radians. They are written as. z = epsilon z + pz(2)(z) over bar-(z) over bar (3), where z is complex, the time is real, and epsilon = epsilon(1)+ i epsilon(2), p = p(1)+ ip(2) are complex parameters. When they have some critical points at infinity, i.e. |p(2)| <= 1, it is well-known that they can have at most one (hyperbolic) limit cycle which surrounds the origin. On the other hand when they have no critical points at infinity, i.e. |p(2)| > 1, there are examples exhibiting at least two limit cycles surrounding nine critical points. In this paper we give two criteria for proving in some cases uniqueness and hyperbolicity of the limit cycle that surrounds the origin. Our results apply to systems having a limit cycle that surrounds either 1, 5 or 9 critical points, the origin being one of these points. The key point of our approach is the use of Abel equations.
引用
收藏
页码:1035 / 1043
页数:9
相关论文
共 41 条
  • [1] Limit cycles for a class of quintic Z6-equivariant systems without infinite critical points
    Alvarez, M. J.
    Labouriau, I. S.
    Murza, A. C.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (05) : 841 - 857
  • [2] LIMIT CYCLES FOR A CLASS OF ELEVENTH Z12-EQUIVARIANT SYSTEMS WITHOUT INFINITE CRITICAL POINTS
    Murza, Adrian C.
    MATHEMATICAL REPORTS, 2017, 19 (02): : 209 - 223
  • [3] LIMIT CYCLES FOR Z2n-EQUIVARIANT SYSTEMS WITHOUT INFINITE EQUILIBRIA
    Labouriau, Isabel S.
    Murza, Adrian C.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [4] On the existence and uniqueness of limit cycles in planar continuous piecewise linear systems without symmetry
    Llibre, Jaume
    Ordonez, Manuel
    Ponce, Enrique
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (05) : 2002 - 2012
  • [5] Nondegenerate centers and limit cycles of cubic Kolmogorov systems
    Algaba, Antonio
    Garcia, Cristobal
    Gine, Jaume
    NONLINEAR DYNAMICS, 2018, 91 (01) : 487 - 496
  • [6] Nondegenerate centers and limit cycles of cubic Kolmogorov systems
    Antonio Algaba
    Cristóbal García
    Jaume Giné
    Nonlinear Dynamics, 2018, 91 : 487 - 496
  • [7] Small amplitude limit cycles of symmetric cubic systems
    Blows, Terence R.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (09) : 2323 - 2328
  • [8] Heteroclinic bifurcation of limit cycles in perturbed cubic Hamiltonian systems by higher-order analysis
    Geng, Wei
    Han, Maoan
    Tian, Yun
    Ke, Ai
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 357 : 412 - 435
  • [9] Limit cycles of planar picewise linear Hamiltonian systems without equilibrium points separated by two circles
    Loubna Damene
    Rebiha Benterki
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 1103 - 1114
  • [10] Limit cycles of planar picewise linear Hamiltonian systems without equilibrium points separated by two circles
    Damene, Loubna
    Benterki, Rebiha
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 1103 - 1114