Identification of tumor-educated platelet biomarkers of non-small-cell lung cancer

被引:39
作者
Sheng, Meiling [1 ]
Dong, Zhaohui [2 ]
Xie, Yanping [3 ]
机构
[1] Jinhua Peoples Hosp, Dept Respirat, Jinhua 321000, Zhejiang, Peoples R China
[2] Huzhou Univ, Affiliated Hosp 1, Hosp Huzhou 1, Dept Intens Care Unit, Huzhou 313000, Zhejiang, Peoples R China
[3] Huzhou Univ, Affiliated Hosp 1, Hosp Huzhou 1, Dept Resp Med, 158 Guangchanghou Rd, Huzhou 313000, Zhejiang, Peoples R China
来源
ONCOTARGETS AND THERAPY | 2018年 / 11卷
关键词
tumor-educated platelet; TEP; liquid biopsy; minimal redundancy; maximal relevance; MRMR; incremental feature selection; IFS; non-small-cell lung cancer; NSCLC; FEATURE-SELECTION; LIQUID BIOPSY; EXPRESSION; PREDICTION; RELEVANCE; MIGRATION; GENES;
D O I
10.2147/OTT.S177384
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Lung cancer is a severe cancer with a high death rate. The 5-year survival rate for stage III lung cancer is much lower than stage I. Early detection and intervention of lung cancer patients can significantly increase their survival time. However, conventional lung cancer-screening methods, such as chest X-rays, sputum cytology, positron-emission tomography (PET), low-dose computed tomography (CT), magnetic resonance imaging, and gene-mutation,-methylation, and-expression biomarkers of lung tissue, are invasive, radiational, or expensive. Liquid biopsy is non-invasive and does little harm to the body. It can reflect early-stage dysfunctions of tumorigenesis and enable early detection and intervention. Methods: In this study, we analyzed RNA-sequencing data of tumor-educated platelets (TEPs) in 402 non-small-cell lung cancer (NSCLC) patients and 231 healthy controls. A total of 48 biomarker genes were selected with advanced minimal-redundancy, maximal-relevance, and incremental feature-selection (IFS) methods. Results: A support vector-machine (SVM) classifier based on the 48 biomarker genes accurately predicted NSCLC with leave-one-out cross-validation (LOOCV) sensitivity, specificity, accuracy, and Matthews correlation coefficients of 0.925, 0.827,0.889, and 0.760, respectively. Network analysis of the 48 genes revealed that the WASFI actin cytoskeleton module, PRKAB2 kinase module, RSRCI ribosomal protein module, PDHB carbohydrate-metabolism module, and three intermodule hubs (TPM2, MYL9, and PPP1R12C) may play important roles in NSCLC tumorigenesis and progression. Conclusion: The 48-gene TIP liquid-biopsy biomarkers will facilitate early screening of NSCLC and prolong the survival of cancer patients.
引用
收藏
页码:8143 / 8151
页数:9
相关论文
共 50 条
  • [1] Inhibition of p90 ribosomal S6 kinase attenuates cell migration and proliferation of the human lung adenocarcinoma through phospho-GSK-3β and osteopontin
    Abdulrahman, Nabeel
    Jaballah, Maiy
    Poomakkoth, Noufira
    Riaz, Sadaf
    Abdelaziz, Somaia
    Issa, Aya
    Mraiche, Fatima
    [J]. MOLECULAR AND CELLULAR BIOCHEMISTRY, 2016, 418 (1-2) : 21 - 29
  • [2] Swarm Intelligence-Enhanced Detection of Non-Small-Cell Lung Cancer Using Tumor-Educated Platelets
    Best, Myron G.
    Sol, Nik
    't Veld, Sjors G. J. G. In
    Vancura, Adrienne
    Muller, Mirte
    Niemeijer, Anna-Larissa N.
    Fejes, Aniko V.
    Fat, Lee-Ann Tjon Kon
    't Veld, Anna E. Huis In
    Leurs, Cyra
    Le Large, Tessa Y.
    Meijer, Laura L.
    Kooi, Irsan E.
    Rustenburg, Francois
    Schellen, Pepijn
    Verschueren, Heleen
    Post, Edward
    Wedekind, Laurine E.
    Bracht, Jillian
    Esenkbrink, Michelle
    Wils, Leon
    Favaro, Francesca
    Schoonhoven, Jilian D.
    Tannous, Jihane
    Meijers-Heijboer, Hanne
    Kazemier, Geert
    Giovannetti, Elisa
    Reijneveld, Jaap C.
    Idema, Sander
    Killestein, Joep
    Heger, Michal
    de Jager, Saskia C.
    Urbanus, Rolf T.
    Hoefer, Imo E.
    Pasterkamp, Gerard
    Mannhalter, Christine
    Gomez-Arroyo, Jose
    Bogaard, Harm-Jan
    Noske, David P.
    Vandertop, W. Peter
    van den Broek, Daan
    Ylstra, Bauke
    Nilsson, R. Jonas A.
    Wesseling, Pieter
    Karachaliou, Niki
    Rosell, Rafael
    Lee-Lewandrowski, Elizabeth
    Lewandrowski, Kent B.
    Tannous, Bakhos A.
    de Langen, Adrianus J.
    [J]. CANCER CELL, 2017, 32 (02) : 238 - +
  • [3] RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics
    Best, Myron G.
    Sol, Nik
    Kooi, Irsan
    Tannous, Jihane
    Westerman, Bart A.
    Rustenburg, Francois
    Schellen, Pepijn
    Verschueren, Heleen
    Post, Edward
    Koster, Jan
    Ylstra, Bauke
    Ameziane, Najim
    Dorsman, Josephine
    Smit, Egbert F.
    Verheul, Henk M.
    Noske, David P.
    Reijneveld, Jaap C.
    Nilsson, R. Jonas A.
    Tannous, Bakhos A.
    Wesseling, Pieter
    Wurdinger, Thomas
    [J]. CANCER CELL, 2015, 28 (05) : 666 - 676
  • [4] Identification of Genes Associated with Breast Cancer Metastasis to Bone on a Protein-Protein Interaction Network with a Shortest Path Algorithm
    Cai, Yu-Dong
    Zhang, Qing
    Zhang, Yu-Hang
    Chen, Lei
    Huang, Tao
    [J]. JOURNAL OF PROTEOME RESEARCH, 2017, 16 (02) : 1027 - 1038
  • [5] GATHER: a systems approach to interpreting genomic signatures
    Chang, Jeffrey T.
    Nevins, Joseph R.
    [J]. BIOINFORMATICS, 2006, 22 (23) : 2926 - 2933
  • [6] Downregulation of ribosomal protein S6 inhibits the growth of non-small cell lung cancer by inducing cell cycle arrest, rather than apoptosis
    Chen, Bojiang
    Zhang, Wen
    Gao, Jun
    Chen, Hong
    Jiang, Li
    Liu, Dan
    Cao, Yidan
    Zhao, Shuang
    Qiu, Zhixin
    Zeng, Jing
    Zhang, Shangfu
    Li, Weimin
    [J]. CANCER LETTERS, 2014, 354 (02) : 378 - 389
  • [7] Network-Based Method for Identifying Co-Regeneration Genes in Bone, Dentin, Nerve and Vessel Tissues
    Chen, Lei
    Pan, Hongying
    Zhang, Yu-Hang
    Feng, Kaiyan
    Kong, XiangYin
    Huang, Tao
    Cai, Yu-Dong
    [J]. GENES, 2017, 8 (10)
  • [8] An integrated method for the identification of novel genes related to oral cancer
    Chen, Lei
    Yang, Jing
    Xing, Zhihao
    Yuan, Fei
    Shu, Yang
    Zhang, YunHua
    Kong, XiangYin
    Huang, Tao
    Li, HaiPeng
    Cai, Yu-Dong
    [J]. PLOS ONE, 2017, 12 (04):
  • [9] Identification of novel candidate drivers connecting different dysfunctional levels for lung adenocarcinoma using protein-protein interactions and a shortest path approach
    Chen, Lei
    Huang, Tao
    Zhang, Yu-Hang
    Jiang, Yang
    Zheng, Mingyue
    Cai, Yu-Dong
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [10] Identifying novel protein phenotype annotations by hybridizing protein-protein interactions and protein sequence similarities
    Chen, Lei
    Zhang, Yu-Hang
    Huang, Tao
    Cai, Yu-Dong
    [J]. MOLECULAR GENETICS AND GENOMICS, 2016, 291 (02) : 913 - 934