Dewetting transition of water on nanostructured and wettability patterned surfaces: A molecular dynamics study

被引:12
作者
Ding, Wenyang [1 ]
Wang, Man [1 ]
Dai, Xingbo [1 ]
Zhang, Jingzhi [2 ,3 ]
Xin, Gongming [2 ,3 ]
Wang, Xinyu [3 ]
机构
[1] Shandong Univ, Inst Thermal Sci & Technol, Jinan 250061, Peoples R China
[2] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Peoples R China
[3] Shandong Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
Dewetting; Volume fraction; Tilt angle; Hybrid wettability ratio; Molecular dynamics simulation; DROPWISE CONDENSATION; HEAT-TRANSFER; PHASE-CHANGE; DROPLETS; GROWTH; DROPS; ENHANCEMENT; SIMULATION; FILMWISE; STATES;
D O I
10.1016/j.molliq.2021.116869
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Engineering the dropwise condensation of water on surfaces is crucial in extensive applications including power generation, thermal management, water harvesting and desalination. Here we propose an efficacious avenue to retard pinning by molecular dynamics simulation, wherein the volume fraction, tilt angle and hybrid wettability ratio are adjusted in a progressive manner to obtain the optimal combination. The results demonstrate that a larger volume fraction leads to better dewetting transition ability and condensation performance. Additionally, the dewetting transition ability of nanocone surfaces is superior to that of nanopillar surfaces, and 10 degrees tilt angle endows surfaces with the best dewetting transition ability compared to other tilt angles. Moreover, 1/3 hybrid wettability ratio can effectively suspend the liquid and resist it from pinning to the texture of surfaces. Finally, an optimal surface characterized by fraction1 volume fraction, 10 degrees tilt angle and 1/3 hybrid wettability ratio is obtained. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Molecular dynamics study on water vapor condensation and infiltration characteristics in nanopores with tunable wettability [J].
Hu, Haowei ;
Li, Qin ;
Liu, Shuang ;
Fang, Tingyong .
APPLIED SURFACE SCIENCE, 2019, 494 :249-258
[22]   Molecular dynamics study of explosive boiling on hybrid wettability concave and convex surfaces [J].
Zhan, Hongren ;
Liu, Dongling ;
Ji, Baichen ;
Liu, Debin ;
Zhang, Zhigang .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2023, 149
[23]   Molecular dynamics of dewetting of ultra-thin water films on solid substrate [J].
Ai-jin Xu ;
Zhe-wei Zhou ;
Guo-hui Hu .
Applied Mathematics and Mechanics, 2007, 28 :1555-1559
[24]   Molecular dynamics of dewetting of ultra-thin water films on solid substrate [J].
Xu Ai-jin ;
Zhou Zhe-wei ;
Hu Guo-hui .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2007, 28 (12) :1555-1559
[25]   Molecular dynamics of dewetting of ultra-thin water films on solid substrate [J].
徐爱进 ;
周哲玮 ;
胡国辉 .
AppliedMathematicsandMechanics(EnglishEdition), 2007, (12) :1555-1559
[26]   Microscopic mechanisms of thermal transport at the SiO2-water interface under the influence of wettability: A molecular dynamics study [J].
Ma, Ming ;
Zhang, Xiaohui ;
Xiong, Can ;
Huang, Xiaoyan ;
Chen, Luyang ;
Qing, Shan ;
Wang, Hua .
CHEMICAL PHYSICS, 2025, 595
[27]   Water slippage on hydrophobic nanostructured surfaces: molecular dynamics results for different filling levels [J].
Gentili, D. ;
Chinappi, M. ;
Bolognesi, G. ;
Giacomello, A. ;
Casciola, C. M. .
MECCANICA, 2013, 48 (08) :1853-1861
[28]   Bubble nucleation over patterned surfaces with different wettabilities: Molecular dynamics investigation [J].
Zhou, Wenjing ;
Li, Yang ;
Li, Mingjie ;
Wei, Jinjia ;
Tao, Wenquan .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 136 :1-9
[29]   Effects of Surface Wettability on Rapid Boiling and Bubble Nucleation: A Molecular Dynamics Study [J].
Chen, Yujie ;
Zou, Yu ;
Yu, Bo ;
Sun, Dongliang ;
Chen, Xuejiao .
NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2018, 22 (03) :198-212
[30]   Acoustothermal Promotion of Bubble Nucleation on Nanostructured Cu Surfaces: A Molecular Dynamics Study [J].
Bai, Yunlong ;
Zhao, Jinpeng ;
Zhou, Wenjing ;
Wei, Jinjia .
LANGMUIR, 2025,