Dynamics of recurrent modulational instability near its separatrix in nonlinear fiber optics

被引:4
作者
Wang, Xinlin [1 ,2 ]
Dong, Zhengqiu [1 ]
Deng, Zhixiang [1 ]
机构
[1] Univ South China, Sch Elect Engn, Hunan Prov Key Lab Ultra Fast Micro Nano Technol, Hengyang 421001, Peoples R China
[2] Univ South China, Sch Mech Engn, Hengyang 421001, Peoples R China
关键词
Hamiltonian; Fermi-Pasta-Ulam (FPU); Symmetry-breaking; Phase-plane topology; Separatrix crossing; Modulation instability; GENERATION; SOLITON; PULSES;
D O I
10.1016/j.rinp.2021.104715
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Separatrix crossing stands for the continuation of the modulation instability into the strong depleted regime and is responsible for the symmetry breaking nature of the recurrence phenomenon. The near-separatrix dynamic for recurrent modulational instability is of great importance because it is closely associated with the formation of rogue breather structures. Here, we have developed the underlying phase-space structure of nonlinear modulation instability by treating the three-mode truncate model as a simple oscillator. This allowed us to reveal the high sensitivity of the switching dynamics characterized by inner or outer trajectories to the initial condition around a separatrix. Our results present a major step forward towards the complete understanding of recurrent modulational instability in a truly conservative setting and can provide a guidance to experimentally measure the involved recursive behaviors.
引用
收藏
页数:6
相关论文
共 31 条
[1]  
Agrawal G. P, 2013, NONLINEAR FIBER OPTI, DOI DOI 10.1016/C2011-0-00045-5
[2]   Observation of Fermi-Pasta-Ulam Recurrence Induced by Breather Solitons in an Optical Microresonator [J].
Bao, Chengying ;
Jaramillo-Villegas, Jose A. ;
Xuan, Yi ;
Leaird, Daniel E. ;
Qi, Minghao ;
Weiner, Andrew M. .
PHYSICAL REVIEW LETTERS, 2016, 117 (16)
[3]   Induced modulation instability and recurrence in nematic liquid crystals [J].
Beeckman, J. ;
Hutsebaut, X. ;
Haelterman, M. ;
Neyts, K. .
OPTICS EXPRESS, 2007, 15 (18) :11185-11195
[4]   Optimal frequency conversion in the nonlinear stage of modulation instability [J].
Bendahmane, A. ;
Mussot, A. ;
Kudlinski, A. ;
Szriftgiser, P. ;
Conforti, M. ;
Wabnitz, S. ;
Trillo, S. .
OPTICS EXPRESS, 2015, 23 (24) :30861-30871
[5]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[6]   THIRD-ORDER THREE-WAVE MIXING IN SINGLE-MODE FIBERS: EXACT SOLUTIONS AND SPATIAL INSTABILITY EFFECTS [J].
CAPPELLINI, G ;
TRILLO, S .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1991, 8 (04) :824-838
[7]   Doubly periodic solutions of the focusing nonlinear Schrodinger equation: Recurrence, period doubling, and amplification outside the conventional modulation-instability band [J].
Conforti, Matteo ;
Mussot, Arnaud ;
Kudlinski, Alexandre ;
Trillo, Stefano ;
Akhmediev, Nail .
PHYSICAL REVIEW A, 2020, 101 (02)
[8]   Supercontinuum generation in photonic crystal fiber [J].
Dudley, John M. ;
Genty, Goery ;
Coen, Stephane .
REVIEWS OF MODERN PHYSICS, 2006, 78 (04) :1135-1184
[9]  
Dudley JM, 2014, NAT PHOTONICS, V8, DOI [10.1038/nphoton.2014.220, 10.1038/NPHOTON.2014.220]
[10]   The finite gap method and the analytic description of the exact rogue wave recurrence in the periodic NLS Cauchy problem. 1 [J].
Grinevich, P. G. ;
Santini, P. M. .
NONLINEARITY, 2018, 31 (11) :5258-5308