共 50 条
Synthesis and Characterization of Dual Stimuli-Sensitive Biodegradable Polyurethane Soft Hydrogels for 3D Cell-Laden Bioprinting
被引:81
|作者:
Hsiao, Shih-Hsiang
[1
]
Hsu, Shan-hui
[1
,2
]
机构:
[1] Natl Taiwan Univ, Inst Polymer Sci & Engn, 1 Sect 4 Roosevelt Rd, Taipei 10617, Taiwan
[2] Natl Hlth Res Inst, Inst Cellular & Syst Med, 35 Keyan Rd, Miaoli 35053, Taiwan
关键词:
3D bioprinting;
biodegradable polyurethane;
dual stimuli-responsiveness;
creep;
soft hydrogel;
MECHANICAL-PROPERTIES;
HYBRID-GEL;
TISSUE;
SCAFFOLDS;
FABRICATION;
CONSTRUCTS;
COMPOSITE;
SALT;
D O I:
10.1021/acsami.8b08362
中图分类号:
TB3 [工程材料学];
学科分类号:
0805 ;
080502 ;
摘要:
Three-dimensional bioprinting serves as an attractive platform to fabricate customized tissue-engineered substitutes from biomaterials and cells for the repair or replacement of injured tissues and organs. A common challenge for 3D bioprinting materials is that the structures printed from the biodegradable polymer hydrogels tend to collapse because of the poor mechanical stability. In this study, dual stimuli-responsive biodegradable polyurethane (PU) dispersions (PUA2 and PUA3) were synthesized from an eco-friendly waterborne process. Acrylate group was introduced in the PU chain end to serve as a photosensitive moiety for UV-induced cross-linking and improvement of the printability, while mixed oligodiols in the soft segment remained to be the thermosensitive moiety. The photo/thermal-induced morphological changes of PU nanoparticles were verified by dynamic light scattering, small-angle X-ray scattering, and rheological measurement of the dispersions. It was observed that these PU nanoparticles became more rod-like in shape after UV treatment and formed compact packing structures upon further heating. With the thermosensitive properties, these UV-cured PU dispersions underwent rapid thermal gelation with gel moduli in the range 0.5-2 kPa near body temperature. The rheological properties of the PU hydrogels including dynamic viscoelasticity, creep recovery, and shear thinning behavior at 37 degrees C were favorable for processing by microextrusion-based 3D printing and could be easily mixed with cells before printing to produce cell-laden constructs. The dual-responsive hydrogel constructs demonstrated higher resolution and shape fidelity as well as better cell viability and proliferation than the thermoresponsive control. Moreover, the softer hydrogel (PUA3) with a low modulus (<1 kPa) could offer neural stem cells a tofu-like, stable, and inductive 3D microenvironment to proliferate and differentiate. We expect that the photo/thermoresponsive biodegradable polyurethane ink may offer unique rheological properties to contribute toward the custom-made bioprinting of soft tissues.
引用
收藏
页码:29273 / 29287
页数:15
相关论文