Synthesis and Characterization of Dual Stimuli-Sensitive Biodegradable Polyurethane Soft Hydrogels for 3D Cell-Laden Bioprinting

被引:81
|
作者
Hsiao, Shih-Hsiang [1 ]
Hsu, Shan-hui [1 ,2 ]
机构
[1] Natl Taiwan Univ, Inst Polymer Sci & Engn, 1 Sect 4 Roosevelt Rd, Taipei 10617, Taiwan
[2] Natl Hlth Res Inst, Inst Cellular & Syst Med, 35 Keyan Rd, Miaoli 35053, Taiwan
关键词
3D bioprinting; biodegradable polyurethane; dual stimuli-responsiveness; creep; soft hydrogel; MECHANICAL-PROPERTIES; HYBRID-GEL; TISSUE; SCAFFOLDS; FABRICATION; CONSTRUCTS; COMPOSITE; SALT;
D O I
10.1021/acsami.8b08362
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Three-dimensional bioprinting serves as an attractive platform to fabricate customized tissue-engineered substitutes from biomaterials and cells for the repair or replacement of injured tissues and organs. A common challenge for 3D bioprinting materials is that the structures printed from the biodegradable polymer hydrogels tend to collapse because of the poor mechanical stability. In this study, dual stimuli-responsive biodegradable polyurethane (PU) dispersions (PUA2 and PUA3) were synthesized from an eco-friendly waterborne process. Acrylate group was introduced in the PU chain end to serve as a photosensitive moiety for UV-induced cross-linking and improvement of the printability, while mixed oligodiols in the soft segment remained to be the thermosensitive moiety. The photo/thermal-induced morphological changes of PU nanoparticles were verified by dynamic light scattering, small-angle X-ray scattering, and rheological measurement of the dispersions. It was observed that these PU nanoparticles became more rod-like in shape after UV treatment and formed compact packing structures upon further heating. With the thermosensitive properties, these UV-cured PU dispersions underwent rapid thermal gelation with gel moduli in the range 0.5-2 kPa near body temperature. The rheological properties of the PU hydrogels including dynamic viscoelasticity, creep recovery, and shear thinning behavior at 37 degrees C were favorable for processing by microextrusion-based 3D printing and could be easily mixed with cells before printing to produce cell-laden constructs. The dual-responsive hydrogel constructs demonstrated higher resolution and shape fidelity as well as better cell viability and proliferation than the thermoresponsive control. Moreover, the softer hydrogel (PUA3) with a low modulus (<1 kPa) could offer neural stem cells a tofu-like, stable, and inductive 3D microenvironment to proliferate and differentiate. We expect that the photo/thermoresponsive biodegradable polyurethane ink may offer unique rheological properties to contribute toward the custom-made bioprinting of soft tissues.
引用
收藏
页码:29273 / 29287
页数:15
相关论文
共 50 条
  • [31] Cell-laden microengineered pullulan methacrylate hydrogels promote cell proliferation and 3D cluster formation
    Bae, Hojae
    Ahari, Amir F.
    Shin, Hyeongho
    Nichol, Jason W.
    Hutson, Che B.
    Masaeli, Mahdokht
    Kim, Su-Hwan
    Aubin, Hug
    Yamanlar, Seda
    Khademhosseini, Ali
    SOFT MATTER, 2011, 7 (05) : 1903 - 1911
  • [32] Cell-Laden 3D Hydrogels of Type I Collagen Incorporating Bacterial Nanocellulose Fibers
    Malandain, Nanthilde
    Sanz-Fraile, Hector
    Farre, Ramon
    Otero, Jorge
    Roig, Anna
    Laromaine, Anna
    ACS APPLIED BIO MATERIALS, 2023, 6 (09) : 3638 - 3647
  • [33] Enabling 3D bioprinting of cell-laden pure collagen scaffolds via tannic acid supporting bath
    Palladino, Sara
    Copes, Francesco
    Chevallier, Pascale
    Candiani, Gabriele
    Mantovani, Diego
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [34] Optimization of methacrylated gelatin /layered double hydroxides nanocomposite cell-laden hydrogel bioinks with high printability for 3D extrusion bioprinting
    Alarcin, Emine
    Izbudak, Burcin
    Erarslan, Elif Yuce
    Domingo, Sherif
    Tutar, Rumeysa
    Titi, Kariman
    Kocaaga, Banu
    Guner, F. Seniha
    Bal-Ozturk, Ayca
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2023, 111 (02) : 209 - 223
  • [35] Bottom-up fabrication of 3D cell-laden microfluidic constructs
    He, Jiankang
    Mao, Mao
    Liu, Yaxiong
    Zhu, Lin
    Li, Dichen
    MATERIALS LETTERS, 2013, 90 : 93 - 96
  • [36] 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair
    Hamid, Omar A.
    Eltaher, Hoda M.
    Sottile, Virginie
    Yang, Jing
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 120
  • [37] Precise stacking of decellularized extracellular matrix based 3D cell-laden constructs by a 3D cell printing system equipped with heating modules
    Ahn, Geunseon
    Min, Kyung-Hyun
    Kim, Changhwan
    Lee, Jeong-Seok
    Kang, Donggu
    Won, Joo-Yun
    Cho, Dong-Woo
    Kim, Jun-Young
    Jin, Songwan
    Yun, Won-Soo
    Shim, Jin-Hyung
    SCIENTIFIC REPORTS, 2017, 7
  • [38] Single cell-laden protease-sensitive microniches for long-term culture in 3D
    Lienemann, Philipp S.
    Rossow, Torsten
    Mao, Angelo S.
    Vallmajo-Martin, Queralt
    Ehrbar, Martin
    Mooney, David J.
    LAB ON A CHIP, 2017, 17 (04) : 727 - 737
  • [39] 3D Inkjet Printing of Complex, Cell-Laden Hydrogel Structures
    Negro, Andrea
    Cherbuin, Thibaud
    Lutolf, Matthias P.
    SCIENTIFIC REPORTS, 2018, 8
  • [40] Neural stem cell-laden 3D bioprinting of polyphenol-doped electroconductive hydrogel scaffolds for enhanced neuronal differentiation
    Song, Shaoshuai
    Liu, Xiaoyun
    Huang, Jie
    Zhang, Zhijun
    BIOMATERIALS ADVANCES, 2022, 133