Synthesis and Characterization of Dual Stimuli-Sensitive Biodegradable Polyurethane Soft Hydrogels for 3D Cell-Laden Bioprinting

被引:81
|
作者
Hsiao, Shih-Hsiang [1 ]
Hsu, Shan-hui [1 ,2 ]
机构
[1] Natl Taiwan Univ, Inst Polymer Sci & Engn, 1 Sect 4 Roosevelt Rd, Taipei 10617, Taiwan
[2] Natl Hlth Res Inst, Inst Cellular & Syst Med, 35 Keyan Rd, Miaoli 35053, Taiwan
关键词
3D bioprinting; biodegradable polyurethane; dual stimuli-responsiveness; creep; soft hydrogel; MECHANICAL-PROPERTIES; HYBRID-GEL; TISSUE; SCAFFOLDS; FABRICATION; CONSTRUCTS; COMPOSITE; SALT;
D O I
10.1021/acsami.8b08362
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Three-dimensional bioprinting serves as an attractive platform to fabricate customized tissue-engineered substitutes from biomaterials and cells for the repair or replacement of injured tissues and organs. A common challenge for 3D bioprinting materials is that the structures printed from the biodegradable polymer hydrogels tend to collapse because of the poor mechanical stability. In this study, dual stimuli-responsive biodegradable polyurethane (PU) dispersions (PUA2 and PUA3) were synthesized from an eco-friendly waterborne process. Acrylate group was introduced in the PU chain end to serve as a photosensitive moiety for UV-induced cross-linking and improvement of the printability, while mixed oligodiols in the soft segment remained to be the thermosensitive moiety. The photo/thermal-induced morphological changes of PU nanoparticles were verified by dynamic light scattering, small-angle X-ray scattering, and rheological measurement of the dispersions. It was observed that these PU nanoparticles became more rod-like in shape after UV treatment and formed compact packing structures upon further heating. With the thermosensitive properties, these UV-cured PU dispersions underwent rapid thermal gelation with gel moduli in the range 0.5-2 kPa near body temperature. The rheological properties of the PU hydrogels including dynamic viscoelasticity, creep recovery, and shear thinning behavior at 37 degrees C were favorable for processing by microextrusion-based 3D printing and could be easily mixed with cells before printing to produce cell-laden constructs. The dual-responsive hydrogel constructs demonstrated higher resolution and shape fidelity as well as better cell viability and proliferation than the thermoresponsive control. Moreover, the softer hydrogel (PUA3) with a low modulus (<1 kPa) could offer neural stem cells a tofu-like, stable, and inductive 3D microenvironment to proliferate and differentiate. We expect that the photo/thermoresponsive biodegradable polyurethane ink may offer unique rheological properties to contribute toward the custom-made bioprinting of soft tissues.
引用
收藏
页码:29273 / 29287
页数:15
相关论文
共 50 条
  • [21] Rheological characterization of cell-laden alginate-gelatin hydrogels for 3D biofabrication
    Gregory, Tyler
    Benhal, Prateek
    Scutte, Annie
    Quashie Jr, David
    Harrison, Kiram
    Cargill, Casey
    Grandison, Saliya
    Savitsky, Mary Jean
    Ramakrishnan, Subramanian
    Ali, Jamel
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2022, 136
  • [22] Evaluating cells metabolic activity of bioinks for bioprinting: the role of cell-laden hydrogels and 3D printing on cell survival
    Mazzoldi, Elena Laura
    Gaudenzi, Giulia
    Ginestra, Paola Serena
    Ceretti, Elisabetta
    Giliani, Silvia Clara
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [23] Biomaterial ink synthesis platform for 3D printing customizable, cell-laden hydrogels
    Shah, Ramille
    Rutz, Alexandra
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [24] Cell-Laden Thermosensitive Chitosan Hydrogel Bioinks for 3D Bioprinting Applications
    Ku, Jongbeom
    Seonwoo, Hoon
    Park, Sangbae
    Jang, Kyoung-Je
    Lee, Juo
    Lee, Myungchul
    Lim, Jae Woon
    Kim, Jangho
    Chung, Jong Hoon
    APPLIED SCIENCES-BASEL, 2020, 10 (07):
  • [25] In Situ Patterning of Microfluidic Networks in 3D Cell-Laden Hydrogels
    Brandenberg, Nathalie
    Lutolf, Matthias P.
    ADVANCED MATERIALS, 2016, 28 (34) : 7450 - 7456
  • [26] Design and Synthesis of Stem Cell-Laden Keratin/Glycol Chitosan Methacrylate Bioinks for 3D Bioprinting
    Yu, Kai-Fu
    Lu, Ting-Yu
    Li, Yi-Chen Ethan
    Teng, Kuang-Chih
    Chen, Yin-Chuan
    Wei, Yang
    Lin, Tzu-En
    Cheng, Nai-Chen
    Yu, Jiashing
    BIOMACROMOLECULES, 2022, 23 (07) : 2814 - 2826
  • [27] Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives
    Unagolla, Janitha M.
    Jayasuriya, Ambalangodage C.
    APPLIED MATERIALS TODAY, 2020, 18
  • [28] Optimization of cell-laden bioinks for 3D bioprinting and efficient infection with influenza A virus
    Berg, Johanna
    Hiller, Thomas
    Kissner, Maya S.
    Qazi, Taimoor H.
    Duda, Georg N.
    Hocke, Andreas C.
    Hippenstiel, Stefan
    Elomaa, Laura
    Weinhart, Marie
    Fahrenson, Christoph
    Kurreck, Jens
    SCIENTIFIC REPORTS, 2018, 8
  • [29] Emerging trends and prospects of electroconductive bioinks for cell-laden and functional 3D bioprinting
    Harish KHandral
    Vaishali PNatu
    Tong Cao
    Jerry YHFuh
    Gopu Sriram
    Wen FLu
    Bio-Design and Manufacturing , 2022, (02) : 396 - 411
  • [30] Optimization of cell-laden bioinks for 3D bioprinting and efficient infection with influenza A virus
    Johanna Berg
    Thomas Hiller
    Maya S. Kissner
    Taimoor H. Qazi
    Georg N. Duda
    Andreas C. Hocke
    Stefan Hippenstiel
    Laura Elomaa
    Marie Weinhart
    Christoph Fahrenson
    Jens Kurreck
    Scientific Reports, 8