A VARIATIONAL PRINCIPLE OF TOPOLOGICAL PRESSURE ON SUBSETS FOR AMENABLE GROUP ACTIONS

被引:14
作者
Huang, Xiaojun [1 ]
Li, Zhiqiang [1 ]
Zhou, Yunhua [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Amenable groups; Pesin-Pitskel topological pressure; local measure theoretic pressure; variational principle; ENTROPY; THEOREMS;
D O I
10.3934/dcds.2020146
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a variational principle for topological pressure on compact subsets in the context of amenable group actions. To be precise, for a countable amenable group action on a compact metric space, say G curved right arrow X, for any potential f is an element of C(X), we define and study topological pressure on an arbitrary subset and measure theoretic pressure for any Borel probability measure on X (not necessarily invariant); moreover, we prove a variational principle for this topological pressure on a given nonempty compact subset K subset of X.
引用
收藏
页码:2687 / 2703
页数:17
相关论文
共 26 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]  
[Anonymous], 1995, Cambridge Studies in Advanced Mathematics, DOI DOI 10.1017/CBO9780511623813
[3]   Pointwise ergodic theorems beyond amenable groups [J].
Bowen, Lewis ;
Nevo, Amos .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2013, 33 :777-820
[4]   Sofic entropy and amenable groups [J].
Bowen, Lewis .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 :427-466
[5]  
Bowen R, 2008, LECT NOTES MATH, V470, P1, DOI 10.1007/978-3-540-77695-6
[6]  
Bowen R., 1979, PUBL MATH-PARIS, V50, P11, DOI [10.1007/BF02684767, DOI 10.1007/BF02684767]
[7]   Variational principles for topological entropies of subsets [J].
Feng, De-Jun ;
Huang, Wen .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (08) :2228-2254
[8]   Return times, recurrence densities and entropy for actions of some discrete amenable groups [J].
Hochman, Michael .
JOURNAL D ANALYSE MATHEMATIQUE, 2006, 100 (1) :1-51
[9]   Local entropy theory for a countable discrete amenable group action [J].
Huang, Wen ;
Ye, Xiangdong ;
Zhang, Guohua .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (04) :1028-1082
[10]   A BILLINGSLEY-TYPE THEOREM FOR THE PRESSURE OF AN ACTION OF AN AMENABLE GROUP [J].
Huang, Xiaojun ;
Lian, Yuan ;
Zhu, Changrong .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (02) :959-993