Fault Diagnosis of Induction Motor based on Multi-sensor Data Fusion

被引:0
|
作者
Li Shu-ying [1 ]
Tian Mu-qin [1 ]
Xue Lei [2 ]
机构
[1] Taiyuan Univ Technol, Shanxi Prov Key Lab Coal Mine Equipment & Safety, Taiyuan 030024, Peoples R China
[2] Econ & Tech Inst Shanxi Elect Power Co, Taiyuan 030001, Peoples R China
关键词
multi-sensor data fusion; fault diagnosis; D-S evidential theory;
D O I
10.4028/www.scientific.net/AMM.651-653.729
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
For the conclusions of single parameter fault feature diagnosis has some uncertainty, in induction motor early fault, we proposed the use of multi-sensor data fusion technology, acted signal processing to the collected current, vibration and temperature, extracted feature information failure, fused the evidence independent with each other using D-S evidence fusion rules. According to the final combination results of all the evidence, combined with intermediate results of the evidence combination, we achieved the accurate identification of induction motor rotor early failures and composite fault. The diagnosis examples show that the use of multi-sensor data fusion technology can significantly improve the accuracy and reliability of early fault diagnosis.
引用
收藏
页码:729 / +
页数:2
相关论文
共 50 条
  • [41] Fault diagnosis of mechanical seals using graph neural networks with multi-sensor data fusion
    Zhu, Xiaoran
    Wang, Jiahao
    Wang, Binhui
    Wang, Hao
    Sheng, Ren
    Zhai, Baozun
    ADVANCES IN MECHANICAL ENGINEERING, 2025, 17 (02)
  • [42] Fault diagnosis of an induction motor using data fusion based on neural networks
    Jorkesh, Saeid
    Poshtan, Javad
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2021, 15 (08) : 681 - 689
  • [43] A Method Based on Multi-Sensor Data Fusion for UAV Safety Distance Diagnosis
    Zhang, Wenbin
    Ning, Youhuan
    Suo, Chunguang
    ELECTRONICS, 2019, 8 (12)
  • [44] Hybrid Multimodal Feature Fusion with Multi-Sensor for Bearing Fault Diagnosis
    Xu, Zhenzhong
    Chen, Xu
    Li, Yilin
    Xu, Jiangtao
    SENSORS, 2024, 24 (06)
  • [45] Application of Multi-sensor Information Fusion in the Fault Diagnosis of Hydraulic System
    LIU Bao-jie
    YANG Qing-wen
    WU Xiang
    FANG Shi-dong
    GUO Feng
    International Journal of Plant Engineering and Management, 2017, 22 (01) : 12 - 20
  • [46] Application of multi-sensor information fusion in fault diagnosis of rotating machinery
    Guan, Ke
    Mei, Tao
    Wang, Deji
    2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION ACQUISITION, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2006, : 425 - 429
  • [47] Multi-Sensor Data Fusion Based on Fault Detection and Feedback for Integrated Navigation Systems
    Wang, Jian
    Liang, Kun
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION WORKSHOP: IITA 2008 WORKSHOPS, PROCEEDINGS, 2008, : 232 - +
  • [48] Fault diagnosis of complex systems based on multi-sensor and multi-domain knowledge information fusion
    Yang, Yong-Min
    Ge, Zhe-Xue
    Xu, Yong-Cheng
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL, VOLS 1 AND 2, 2008, : 1065 - 1069
  • [49] Fault tolerant multi-sensor fusion based on the information gain
    Al Hage, Joelle
    El Najjar, Maan E.
    Pomorski, Denis
    13TH EUROPEAN WORKSHOP ON ADVANCED CONTROL AND DIAGNOSIS (ACD 2016), 2017, 783
  • [50] A scoping review on multi-fault diagnosis of industrial rotating machines using multi-sensor data fusion
    Gawde, Shreyas
    Patil, Shruti
    Kumar, Satish
    Kotecha, Ketan
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (05) : 4711 - 4764