Design of 3D printed holder for quartz crystal microbalances

被引:0
作者
Scaccabarozzi, Diego [1 ]
Saggin, Bortolino [1 ]
Magni, Marianna [1 ]
Valnegri, Pietro [1 ]
Corti, Marco Giovanni [1 ]
Palomba, Ernesto [2 ]
Longobardo, Andrea [2 ]
Dirri, Fabrizio [2 ]
Zampetti, Emiliano [3 ]
机构
[1] Politecn Milan, Dept Mech Engn, Lecce, Italy
[2] INAF IAPS, Ist Astrofis & Planetol Spaziale, Rome, Italy
[3] Consiglio Nazl Ric CNR, IIA CNR, Ist Sullinquinamento Atmosfer, Rome, Italy
来源
2021 IEEE 8TH INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE (IEEE METROAEROSPACE) | 2021年
关键词
quartz crystal microbalance; additive manufacturing; stereolithography; thermogravimetry;
D O I
10.1109/METROAEROSPACE51421.2021.9511667
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This work describes the design of a holder for a quartz crystal microbalance for space application. The main objectives of the conceived system are to hold the quartz crystal providing adequate support in the expected mechanical and thermal environments, and to assure the functionalities of the instrument, i.e. measuring the oscillation frequency and the crystal temperature or heating the crystal during regeneration phases. A kinematic mounting has been designed to be manufactured by stereolithography because this technology allows achieving high spatial resolution and complex shapes that are needed to implement an easy assembling and mounting of the holding system. Moreover, the 3D printing technology would provide a cost-effective solution even for small series production.
引用
收藏
页码:715 / 719
页数:5
相关论文
共 15 条
[1]  
Aguilar D, 2015, 3-D Printed Ultem 9085 Testing and Analysis
[2]   Selective Laser Melting of a 1U CubeSat structure. Design for Additive Manufacturing and assembly [J].
Boschetto, Alberto ;
Bottini, Luana ;
Eugeni, Marco ;
Cardini, Valerio ;
Nis, Gabriel Graterol, I ;
Veniali, Francesco ;
Gaudenzi, Paolo .
ACTA ASTRONAUTICA, 2019, 159 :377-384
[3]   A review of quartz crystal microbalances for space applications [J].
Dirri, Fabrizio ;
Palomba, Ernesto ;
Longobardo, Andrea ;
Zampetti, Emiliano ;
Saggin, Bortolino ;
Scaccabarozzi, Diego .
SENSORS AND ACTUATORS A-PHYSICAL, 2019, 287 :48-75
[4]  
Gibson I, 2010, ADDITIVE MANUFACTURING TECHNOLOGIES: RAPID PROTOTYPING TO DIRECT DIGITAL MANUFACTURING, P17, DOI 10.1007/978-1-4419-1120-9_2
[5]   Additive manufacturing in unmanned aerial vehicles (UAVs): Challenges and potential [J].
Goh, G. D. ;
Agarwala, S. ;
Goh, G. L. ;
Dikshit, V. ;
Sing, S. L. ;
Yeong, W. Y. .
AEROSPACE SCIENCE AND TECHNOLOGY, 2017, 63 :140-151
[6]  
Kobryn PA., 2006, ADDITIVE MANUFACTURI
[7]  
Lu C., 1984, Applications of Piezoelectric Quartz Crystal Microbalances, P19, DOI DOI 10.1016/B978-0-444-42277-4.50008-9
[8]  
Magni M, 2018, IEEE METROL AEROSPAC, P629, DOI 10.1109/MetroAeroSpace.2018.8453623
[9]  
Najmon Joel C, 2019, Addit. Manuf. Aerosp. Ind., P7, DOI [10.1016/B978-0-12-814062-8.00002-9, DOI 10.1016/B978-0-12-814062-8.00002-9]
[10]  
Ng M.B., 2018, ASME 2018 INT MECH E, DOI [10.1115/IMECE2018-88181, DOI 10.1115/IMECE2018-88181]