A new class of PT-symmetric Hamiltonians with real spectra

被引:54
作者
Cannata, F
Ioffe, M
Roychoudhury, R
Roy, P
机构
[1] St Petersburg State Univ, Inst Phys, Dept Theoret Phys, St Petersburg 198904, Russia
[2] Dipartimento Fis, I-40126 Bologna, Italy
[3] Ist Nazl Fis Nucl, I-40126 Bologna, Italy
[4] Indian Stat Inst, Phys & Appl Math Unit, Kolkata 700035, W Bengal, India
[5] Abdus Salam Int Ctr Theoret Phys, Trieste, Italy
基金
俄罗斯基础研究基金会;
关键词
supersymmetry; PT symmetry; quasi-solvable models; complex Hamiltonians with real spectra;
D O I
10.1016/S0375-9601(01)00144-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate complex PT-symmetric potentials, associated with quasi-exactly solvable non-Hermitian models involving polynomials and a class of rational functions. We also look for special solutions of intertwining relations of SUSY quantum mechanics providing a partnership between a real and a complex PT-symmetric potential of the kind mentioned above. We investigate conditions sufficient to ensure the reality of the full spectrum or, for the quasi-exactly solvable systems, the reality of the energy of the finite number of levels. (C) 2001 Elsevier Science B,V. All rights reserved.
引用
收藏
页码:305 / 310
页数:6
相关论文
共 23 条
  • [1] Systems with higher-order shape invariance: spectral and algebraic properties
    Andrianov, A
    Cannata, F
    Ioffe, M
    Nishnianidze, D
    [J]. PHYSICS LETTERS A, 2000, 266 (4-6) : 341 - 349
  • [2] 2ND-ORDER DERIVATIVE SUPERSYMMETRY, Q-DEFORMATIONS AND THE SCATTERING PROBLEM
    ANDRIANOV, AA
    IOFFE, MV
    CANNATA, F
    DEDONDER, JP
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1995, 10 (18): : 2683 - 2702
  • [3] SUSY quantum mechanics with complex superpotentials and real energy spectra
    Andrianov, AA
    Ioffe, MV
    Cannata, F
    Dedonder, JP
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (17): : 2675 - 2688
  • [4] sl(2, C) as a complex Lie algebra and the associated non-Hermitian Hamiltonians with real eigenvalues
    Bagchi, B
    Quesne, C
    [J]. PHYSICS LETTERS A, 2000, 273 (5-6) : 285 - 292
  • [5] PT-symmetric sextic potentials
    Bagchi, B
    Cannata, F
    Quesne, C
    [J]. PHYSICS LETTERS A, 2000, 269 (2-3) : 79 - 82
  • [6] A new PT-symmetric complex Hamiltonian with a real spectrum
    Bagchi, B
    Roychoudhury, R
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (01): : L1 - L3
  • [7] PT-symmetric quantum mechanics
    Bender, CM
    Boettcher, S
    Meisinger, PN
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) : 2201 - 2229
  • [8] Quasi-exactly solvable systems and orthogonal polynomials
    Bender, CM
    Dunne, GV
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (01) : 6 - 11
  • [9] Schrodinger operators with complex potential but real spectrum
    Cannata, F
    Junker, G
    Trost, J
    [J]. PHYSICS LETTERS A, 1998, 246 (3-4) : 219 - 226
  • [10] COOPER F, 1995, PHYS REP, V251, P268