Positive solutions for the p-Laplacian with Robin boundary conditions on irregular domains

被引:4
作者
Drabek, P. [1 ]
Schindler, I. [2 ]
机构
[1] Univ W Bohemia, Dept Math, Plzen 30614, Czech Republic
[2] Univ Toulouse, Inst Math Toulouse, CNRS, Equipe MIP CEREMATH,UTI, F-31000 Toulouse, France
关键词
p-Laplacian; Robin boundary conditions; Irregular domains; QUASILINEAR ELLIPTIC-EQUATIONS; ARBITRARY DOMAINS; REGULARITY;
D O I
10.1016/j.aml.2010.11.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Robin boundary conditions on irregular domains where the usual Sobolev embeddings fail. We present a functional framework permitting superhomogeneous growth of the nonlinearity and prove the existence of positive, bounded, and smooth solutions of the p-Laplacian equation. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:588 / 591
页数:4
相关论文
共 14 条
[1]  
Adams R.A., 1975, Sobolev Spaces. Adams. Pure and applied mathematics
[2]  
[Anonymous], 1985, SOBOLEV INEQUALITIES
[3]   The Laplacian with Robin boundary conditions on arbitrary domains [J].
Arendt, W ;
Warma, M .
POTENTIAL ANALYSIS, 2003, 19 (04) :341-363
[4]  
Biegert M., ARXIV08061417
[5]   Robin boundary value problems on arbitrary domains [J].
Daners, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (09) :4207-4236
[6]   A PRIORI ESTIMATES FOR A CLASS OF QUASI-LINEAR ELLIPTIC EQUATIONS [J].
Daners, Daniel ;
Drabek, Pavel .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (12) :6475-6500
[7]  
Diaz J.I., 1985, Nonlinear partial differential equations and free boundaries, Elliptic Equations, V1
[9]   On a maximum principle for weak solutions of some quasi-linear elliptic equations [J].
Drabek, Pavel .
APPLIED MATHEMATICS LETTERS, 2009, 22 (10) :1567-1570
[10]  
NECAS J, 1967, METHODES DIRECTES TH