SEPARATION PROPERTY OF POSITIVE RADIAL SOLUTIONS FOR A GENERAL SEMILINEAR ELLIPTIC EQUATION

被引:0
作者
Yang Fen [1 ]
Zhang Dandan [2 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430081, Peoples R China
[2] Xiangfan Univ, Dept Math, Xiangfan 441053, Peoples R China
关键词
Asymptotic behavior; separation property; semilinear elliptic equation; ASYMPTOTIC-BEHAVIOR; R-N; INFINITE MULTIPLICITY; DIFFERENTIAL-EQUATIONS; DELTA-U; EXISTENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The asymptotic behavior at infinity and an estimate of positive radial solutions of the equation Delta u + Sigma(k)(i=1) c(i)r(li) u(pi) = 0, x epsilon R(n), are obtained and the structure of separation property of positive radial solutions of Eq. (0.1) with different initial data a is discussed.
引用
收藏
页码:181 / 193
页数:13
相关论文
共 21 条
[1]   Infinite multiplicity and separation structure of positive solutions for a semilinear elliptic equation in Rn [J].
Bae, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 200 (02) :274-311
[2]   Separation structure of positive radial solutions of a semilinear elliptic equation in Rn [J].
Bae, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (02) :460-499
[3]   Infinite multiplicity of positive entire solutions for a semilinear elliptic equation [J].
Bae, S ;
Chang, TK ;
Pahk, DH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 181 (02) :367-387
[4]   On a class of semilinear elliptic equations in Rn [J].
Bae, S ;
Chang, TK .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 185 (01) :225-250
[5]   Asymptotic behavior of positive solutions of inhomogeneous semilinear elliptic equations [J].
Bae, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (08) :1373-1403
[6]   Existence and infinite multiplicity for an inhomogeneous semilinear elliptic equation on Rn [J].
Bae, S ;
Ni, WM .
MATHEMATISCHE ANNALEN, 2001, 320 (01) :191-210
[7]   Asymptotic behavior of radial solutions for a class of semilinear elliptic equations [J].
Chen, SH ;
Lu, GZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 133 (02) :340-354
[8]  
Deng Y., 1997, Adv. Differ. Equ, V2, P361
[9]   On the existence of multiple positive solutions for a semilinear problem in exterior domains [J].
Deng, YB ;
Li, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 181 (01) :197-229
[10]   Existence and asymptotic behavior of positive solutions for an inhomogeneous semilinear elliptic equation [J].
Deng, Yinbin ;
Yang, Fen .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (02) :246-272