Hydrothermal/microwave and hydrothermal/ultrasonic synthesis of nanocrystalline titania, zirconia, and hafnia

被引:32
作者
Meskin, P. E.
Gavrilov, A. I.
Maksimov, V. D.
Ivanov, V. K.
Churagulov, B. P.
机构
[1] Russian Acad Sci, NS Kurnakov Gen & Inorgan Chem Inst, Moscow 119991, Russia
[2] Moscow MV Lomonosov State Univ, Moscow 119992, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S0036023607110022
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
We compare the physical-chemical properties (X-ray diffraction (XRD), powder X-ray diffraction, TGA, TEM, and BET) of titania, zirconia, and hafnia nanopowders (d = 10-15 nm) synthesized from amorphous titanyl hydroxide TiO2 center dot nH(2)O, zirconyl hydroxide ZrO(OH)(2) center dot nH(2)O, and hafnyl hydroxide HfO(OH)(2) center dot nH(2)O using hydrothermal (HT), hydrothermal/microwave (HT-MW), and hydrothermal/ultrasonic (HT-US) methods at 150, 180, and 250 degrees C with treatment lasting 0.5-24 h. Titania, zirconia, and hafnia crystallization from amorphous hydroxides is substantially enhanced, and the percentage of the thermally stable zirconia phase (m-ZrO2) in the HT-MW and HT-US processes increases compared to conventional HT synthesis. The observed similar effects have completely different causes. A common factor in both cases is likely the uniformity of heating of treated suspensions. Local overheating in the reaction mixture, which appears during both ultrasonication and microwave treatment, can also play a role in accelerating the hydrothermal processes.
引用
收藏
页码:1648 / 1656
页数:9
相关论文
共 50 条
[41]   MICROWAVE-ASSISTED HYDROTHERMAL SYNTHESIS OF NITROGEN-DOPED TITANIA NANOPARTICLES [J].
Yin, Shu ;
Liu, Bin ;
Sato, Tsugio .
FUNCTIONAL MATERIALS LETTERS, 2008, 1 (03) :173-176
[42]   Hydrothermal synthesis of ultrafine zirconia powders [J].
A. V. Shevchenko ;
A. K. Ruban ;
E. V. Dudnik ;
V. A. Mel’nikova .
Powder Metallurgy and Metal Ceramics, 1997, 36 :420-424
[43]   Hydrothermal synthesis and characterization of zirconia nanocrystallites [J].
Zhu, Hongliang ;
Yang, Deren ;
Xi, Zhenqiang ;
Zhu, Luming .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (04) :1334-1338
[44]   Hydrothermal synthesis of monoclinic zirconia sol [J].
Sun, Yutong ;
Xu, Yebin .
INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2023, 20 (01) :266-271
[45]   Hydrothermal synthesis of ultrafine zirconia powders [J].
Shevchenko, AV ;
Ruban, AK ;
Dudnik, EV ;
Mel'nikova, VA .
POWDER METALLURGY AND METAL CERAMICS, 1997, 36 (7-8) :420-424
[46]   Hydrothermal synthesis of zirconia nanoparticles from commercial zirconia [J].
Behbahani, A. ;
Rowshanzamir, S. ;
Esmaeilifar, A. .
CHISA 2012, 2012, 42 :908-917
[47]   Microwave technique applied to the hydrothermal synthesis and sintering of calcia stabilized zirconia nanoparticles [J].
Rizzuti, Antonino ;
Corradi, Anna ;
Leonelli, Cristina ;
Rosa, Roberto ;
Pielaszek, Roman ;
Lojkowski, Witold .
JOURNAL OF NANOPARTICLE RESEARCH, 2010, 12 (01) :327-335
[48]   Microwave technique applied to the hydrothermal synthesis and sintering of calcia stabilized zirconia nanoparticles [J].
Antonino Rizzuti ;
Anna Corradi ;
Cristina Leonelli ;
Roberto Rosa ;
Roman Pielaszek ;
Witold Lojkowski .
Journal of Nanoparticle Research, 2010, 12 :327-335
[49]   Synthesis of nanocrystalline PZT by hydrothermal method [J].
Athawale, Anjali A. ;
Bapat, Malini S. .
DEFENCE SCIENCE JOURNAL, 2007, 57 (01) :35-39
[50]   Microwave-hydrothermal synthesis of stable nanocrystalline ceria sols for biomedical uses [J].
V. K. Ivanov ;
O. S. Polezhaeva ;
A. B. Shcherbakov ;
D. O. Gil’ ;
Yu. D. Tret’yakov .
Russian Journal of Inorganic Chemistry, 2010, 55 :1-5