Hydrothermal/microwave and hydrothermal/ultrasonic synthesis of nanocrystalline titania, zirconia, and hafnia

被引:32
作者
Meskin, P. E.
Gavrilov, A. I.
Maksimov, V. D.
Ivanov, V. K.
Churagulov, B. P.
机构
[1] Russian Acad Sci, NS Kurnakov Gen & Inorgan Chem Inst, Moscow 119991, Russia
[2] Moscow MV Lomonosov State Univ, Moscow 119992, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S0036023607110022
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
We compare the physical-chemical properties (X-ray diffraction (XRD), powder X-ray diffraction, TGA, TEM, and BET) of titania, zirconia, and hafnia nanopowders (d = 10-15 nm) synthesized from amorphous titanyl hydroxide TiO2 center dot nH(2)O, zirconyl hydroxide ZrO(OH)(2) center dot nH(2)O, and hafnyl hydroxide HfO(OH)(2) center dot nH(2)O using hydrothermal (HT), hydrothermal/microwave (HT-MW), and hydrothermal/ultrasonic (HT-US) methods at 150, 180, and 250 degrees C with treatment lasting 0.5-24 h. Titania, zirconia, and hafnia crystallization from amorphous hydroxides is substantially enhanced, and the percentage of the thermally stable zirconia phase (m-ZrO2) in the HT-MW and HT-US processes increases compared to conventional HT synthesis. The observed similar effects have completely different causes. A common factor in both cases is likely the uniformity of heating of treated suspensions. Local overheating in the reaction mixture, which appears during both ultrasonication and microwave treatment, can also play a role in accelerating the hydrothermal processes.
引用
收藏
页码:1648 / 1656
页数:9
相关论文
共 50 条
  • [21] Synthesis of Mesoporous Nanocrystalline Zirconia by Surfactant-Assisted Hydrothermal Approach
    Nath, Soumav
    Biswas, Ashik
    Kour, Prachi P.
    Sarma, Loka S.
    Sur, Ujjal Kumar
    Ankamwar, Balaprasad G.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (08) : 5390 - 5396
  • [22] Nanocrystalline manganese dioxide synthesis by microwave-hydrothermal treatment
    Boytsova, O. V.
    Shekunova, T. O.
    Baranchikov, A. E.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2015, 60 (05) : 546 - 551
  • [23] Hydrothermal and microwave-assisted synthesis of nanocrystalline ZnO photocatalysts
    Ivanov, Vladimir K.
    Shaporev, Alexey S.
    Sharikov, Felix Yu.
    Baranchikov, Alexander Ye.
    SUPERLATTICES AND MICROSTRUCTURES, 2007, 42 (1-6) : 421 - 424
  • [24] SYNTHESIS OF NANOCRYSTALLINE YIG USING MICROWAVE-HYDROTHERMAL METHOD
    Sadhana, K.
    Shinde, R. S.
    Murthy, S. R.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (17): : 3637 - 3642
  • [25] Microwave-assisted hydrothermal synthesis of nanocrystalline SnO powders
    Pires, F. I.
    Joanni, E.
    Savu, R.
    Zaghete, M. A.
    Longo, E.
    Varela, J. A.
    MATERIALS LETTERS, 2008, 62 (02) : 239 - 242
  • [26] Nanocrystalline manganese dioxide synthesis by microwave-hydrothermal treatment
    O. V. Boytsova
    T. O. Shekunova
    A. E. Baranchikov
    Russian Journal of Inorganic Chemistry, 2015, 60 : 546 - 551
  • [27] Hydrothermal Synthesis of Nanostructured Titania
    Yoshito, Walter Kenji
    Ferreira, Nildemar A. M.
    Coutinho Rumbao, Ana Carolina S.
    Lazar, Dolores R. R.
    Ussui, Valter
    ADVANCED POWDER TECHNOLOGY VII, 2010, 660-661 : 788 - 793
  • [28] Microwave-hydrothermal synthesis of nanocrystalline Pr-doped zirconia powders at pressures up to 8 MPa
    Bondioli, F
    Ferrari, AM
    Braccini, S
    Leonelli, C
    Pellacani, GC
    Opalinska, A
    Chudoba, T
    Grzanka, E
    Palosz, B
    Lojkowski, W
    INTERFACIAL EFFECTS AND NOVEL PROPERTIES OF NANOMATERIALS, 2003, 94 : 193 - 196
  • [29] Synthesis of nanocrystalline solid solutions based on zirconia and hafnia
    T. I. Panova
    V. B. Glushkova
    A. E. Lapshin
    Glass Physics and Chemistry, 2008, 34
  • [30] Hydrothermal synthesis of crystallized nano-particles of rare earth-doped zirconia and hafnia
    Yoshimura, M
    Somiya, S
    MATERIALS CHEMISTRY AND PHYSICS, 1999, 61 (01) : 1 - 8