COMPLIFE 2007: 3RD INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL LIFE SCIENCE
|
2007年
/
940卷
关键词:
D O I:
暂无
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Unfavorable physicochemical properties often cause drug failures. It is therefore important to take lipophilicity and water solubility into account early on in lead discovery. This study presents log D-7 models built using Gaussian Process regression, Support Vector Machines, decision trees and ridge regression algorithms based on 14556 drug discovery compounds of Bayer Schering Pharma. A blind test was conducted using 7013 new measurements from the last months. We also present independent evaluations using public data. Apart from accuracy, we discuss the quality of error bars that can be computed by Gaussian Process models, and ensemble and distance based techniques for the other modelling approaches.