Predicting error bars for QSAR models

被引:0
|
作者
Schroeter, Timon [1 ,3 ]
Schwaighofer, Anton
Mika, Sebastian [4 ]
Ter Laak, Antonius [2 ]
Suelzle, Detlev [2 ]
Ganzer, Ursula [2 ]
Heinrich, Nikolaus [2 ]
Mueller, Klaus-Robert [3 ]
机构
[1] Fraunhofer FIRST, Kekulestr 7, D-12489 Berlin, Germany
[2] Bayer Schering Pharma AG, Res Lab, D-13342 Berlin, Germany
[3] Tech Univ Berlin, Dept Comp Sci, D-10587 Berlin, Germany
[4] idalab GmbH, D-10178 Berlin, Germany
来源
COMPLIFE 2007: 3RD INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL LIFE SCIENCE | 2007年 / 940卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unfavorable physicochemical properties often cause drug failures. It is therefore important to take lipophilicity and water solubility into account early on in lead discovery. This study presents log D-7 models built using Gaussian Process regression, Support Vector Machines, decision trees and ridge regression algorithms based on 14556 drug discovery compounds of Bayer Schering Pharma. A blind test was conducted using 7013 new measurements from the last months. We also present independent evaluations using public data. Apart from accuracy, we discuss the quality of error bars that can be computed by Gaussian Process models, and ensemble and distance based techniques for the other modelling approaches.
引用
收藏
页码:158 / +
页数:2
相关论文
共 50 条
  • [21] Be aware of error measures. Further studies on validation of predictive QSAR models
    Roy, Kunal
    Das, Rudra Narayan
    Ambure, Pravin
    Aher, Rahul B.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 152 : 18 - 33
  • [22] BIAS AND ERROR BARS IN DIMENSION CALCULATIONS AND THEIR EVALUATION IN SOME SIMPLE-MODELS
    RAMSEY, JB
    YUAN, HJ
    PHYSICS LETTERS A, 1989, 134 (05) : 287 - 297
  • [23] Machine learning-driven QSAR models for predicting the mixture toxicity of nanoparticles
    Zhang, Fan
    Wang, Zhuang
    Peijnenburg, Willie J. G. M.
    Vijver, Martina G.
    ENVIRONMENT INTERNATIONAL, 2023, 177
  • [24] QSAR models for predicting the bioactivity of Polo-like Kinase 1 inhibitors
    Kong, Yue
    Yan, Aixia
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2017, 167 : 214 - 225
  • [25] POINTS OF SIGNIFICANCE Error bars
    Krzywinski, Martin
    Altman, Naomi
    NATURE METHODS, 2013, 10 (10) : 921 - 922
  • [26] ERROR BARS IN CBED SYMMETRY
    MANSFIELD, JF
    ULTRAMICROSCOPY, 1985, 18 (1-4) : 91 - 96
  • [27] Error bars in experimental biology
    Cumming, Geoff
    Fidler, Fiona
    Vaux, David L.
    JOURNAL OF CELL BIOLOGY, 2007, 177 (01): : 7 - 11
  • [28] Colour constancy with error bars
    Finlayson, GD
    Hordley, SD
    SEVENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND ITS APPLICATIONS, 1999, (465): : 368 - 371
  • [29] QSAR APPROACHES TO PREDICTING TOXICITY
    DUNN, WJ
    TOXICOLOGY LETTERS, 1988, 43 (1-3) : 277 - 283
  • [30] Assessing estimated velocity-depth models: Finding error bars in tomographic inversion
    Chitu, D. A.
    Al-Ali, M. N.
    Verschuur, D. J.
    GEOPHYSICS, 2008, 73 (05) : VE223 - VE233