Predicting error bars for QSAR models

被引:0
|
作者
Schroeter, Timon [1 ,3 ]
Schwaighofer, Anton
Mika, Sebastian [4 ]
Ter Laak, Antonius [2 ]
Suelzle, Detlev [2 ]
Ganzer, Ursula [2 ]
Heinrich, Nikolaus [2 ]
Mueller, Klaus-Robert [3 ]
机构
[1] Fraunhofer FIRST, Kekulestr 7, D-12489 Berlin, Germany
[2] Bayer Schering Pharma AG, Res Lab, D-13342 Berlin, Germany
[3] Tech Univ Berlin, Dept Comp Sci, D-10587 Berlin, Germany
[4] idalab GmbH, D-10178 Berlin, Germany
来源
COMPLIFE 2007: 3RD INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL LIFE SCIENCE | 2007年 / 940卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unfavorable physicochemical properties often cause drug failures. It is therefore important to take lipophilicity and water solubility into account early on in lead discovery. This study presents log D-7 models built using Gaussian Process regression, Support Vector Machines, decision trees and ridge regression algorithms based on 14556 drug discovery compounds of Bayer Schering Pharma. A blind test was conducted using 7013 new measurements from the last months. We also present independent evaluations using public data. Apart from accuracy, we discuss the quality of error bars that can be computed by Gaussian Process models, and ensemble and distance based techniques for the other modelling approaches.
引用
收藏
页码:158 / +
页数:2
相关论文
共 50 条
  • [11] QSAR models for predicting in vivo aquatic toxicity of chlorinated alkanes to fish
    Zvinavashe, Elton
    van den Berg, Hans
    Soffers, Ans E. M. F.
    Vervoort, Jacques
    Freidig, Andreas
    Murk, Albertinka J.
    Rietjens, Ivonne M. C. M.
    CHEMICAL RESEARCH IN TOXICOLOGY, 2008, 21 (03) : 739 - 745
  • [12] QSAR models for predicting the toxicity of piperidine derivatives against Aedes aegypti
    Doucet, J. P.
    Papa, E.
    Doucet-Panaye, A.
    Devillers, J.
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2017, 28 (06) : 451 - 470
  • [13] QSAR MODELS FOR PREDICTING AQUEOUS SOLUBILITY - A COMPARISON OF 3 MAJOR APPROACHES
    NIRMALAKHANDAN, N
    SPEECE, RE
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1988, 196 : 92 - GEOC
  • [14] A new hybrid system of QSAR models for predicting bioconcentration factors (BCF)
    Zhao, Chunyan
    Boriani, Elena
    Chana, Antonio
    Roncaglioni, Alessandra
    Benfenati, Emilio
    CHEMOSPHERE, 2008, 73 (11) : 1701 - 1707
  • [15] QSAR Models for Predicting Five Levels of Cellular Accumulation of Lysosomotropic Macrocycles
    Norinder, Ulf
    Munic Kos, Vesna
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (23)
  • [16] QSAR Regression Models for Predicting HMG-CoA Reductase Inhibition
    Ancuceanu, Robert
    Popovici, Patriciu Constantin
    Draganescu, Doina
    Busnatu, Stefan
    Lascu, Beatrice Elena
    Dinu, Mihaela
    PHARMACEUTICALS, 2024, 17 (11)
  • [17] Predicting the Predictability: A Unified Approach to the Applicability Domain Problem of QSAR Models
    Horvath, Dragos
    Marcou, Gilles
    Alexandre, Varnek
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2009, 49 (07) : 1762 - 1776
  • [18] Predicting in vivo toxicokinetics of chemicals from in vitro data and QSAR models
    Habka, Dany
    Pery, Alexandre R. R.
    Legallais, Cecile
    Brochot, Celine
    ENVIRONNEMENT RISQUES & SANTE, 2010, 9 (06): : 489 - 501
  • [19] The error bars on impact
    Goodhill, Geoffrey J.
    NETWORK-COMPUTATION IN NEURAL SYSTEMS, 2009, 20 (02) : 47 - 48
  • [20] Machine Learning Models for Predicting Bond Strength of Deformed Bars in Concrete
    V. Degtyarev, Vitaliy
    ACI STRUCTURAL JOURNAL, 2022, 119 (05) : 43 - 56