Local Well-posedness of Nonlinear Time-fractional Diffusion Equation

被引:0
|
作者
Suechoei, Apassara [1 ]
Ngiamsunthorn, Parinya Sa [2 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Dept Math, Bangkok 10140, Thailand
[2] King Mongkuts Univ Technol Thonburi KMUTT, Dept Math, Fac Sci, Math & Stat Applicat MaSA, Bangkok, Thailand
来源
THAI JOURNAL OF MATHEMATICS | 2021年 / 19卷 / 03期
关键词
tempered fractional calculus; existence and uniqueness; diffusion equation; DIFFERENTIAL-EQUATION; GLOBAL EXISTENCE; BLOW-UP; ORDER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the local well-posedness of the following time-fractional nonlinear diffusion equation {(C)D(0,t)(alpha,lambda)u - Delta u = vertical bar u vertical bar(p-1)u, (x,t) is an element of R-n x (0,T], u(x, 0) = u(0)(x), x is an element of R-n, where 0 < alpha < 1, lambda >= 0, T < infinity, p > 1 , u(0) is an element of C-0(R-n) and D-c(0,t)alpha,lambda denotes Caputo tempered fractional derivative of order alpha. The local existence and uniqueness results are obtained from heat kernel and fixed point theorem. Then, we extend the solution to establish a maximal mild solution. Moreover, we provide estimate for continuous dependence on initial condition.
引用
收藏
页码:865 / 884
页数:20
相关论文
共 50 条