Local Well-posedness of Nonlinear Time-fractional Diffusion Equation

被引:0
|
作者
Suechoei, Apassara [1 ]
Ngiamsunthorn, Parinya Sa [2 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Dept Math, Bangkok 10140, Thailand
[2] King Mongkuts Univ Technol Thonburi KMUTT, Dept Math, Fac Sci, Math & Stat Applicat MaSA, Bangkok, Thailand
来源
THAI JOURNAL OF MATHEMATICS | 2021年 / 19卷 / 03期
关键词
tempered fractional calculus; existence and uniqueness; diffusion equation; DIFFERENTIAL-EQUATION; GLOBAL EXISTENCE; BLOW-UP; ORDER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the local well-posedness of the following time-fractional nonlinear diffusion equation {(C)D(0,t)(alpha,lambda)u - Delta u = vertical bar u vertical bar(p-1)u, (x,t) is an element of R-n x (0,T], u(x, 0) = u(0)(x), x is an element of R-n, where 0 < alpha < 1, lambda >= 0, T < infinity, p > 1 , u(0) is an element of C-0(R-n) and D-c(0,t)alpha,lambda denotes Caputo tempered fractional derivative of order alpha. The local existence and uniqueness results are obtained from heat kernel and fixed point theorem. Then, we extend the solution to establish a maximal mild solution. Moreover, we provide estimate for continuous dependence on initial condition.
引用
收藏
页码:865 / 884
页数:20
相关论文
共 50 条
  • [1] Well-Posedness and Asymptotic Estimate for a Diffusion Equation with Time-Fractional Derivative
    Li, Zhiyuan
    Huang, Xinchi
    Yamamoto, Masahiro
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2025, 46 (01) : 115 - 138
  • [2] Well-Posedness and Asymptotic Estimate for a Diffusion Equation with Time-Fractional Derivative
    Zhiyuan LI
    Xinchi HUANG
    Masahiro YAMAMOTO
    Chinese Annals of Mathematics,Series B, 2025, (01) : 115 - 138
  • [3] Well-posedness for the backward problems in time for general time-fractional diffusion equation
    Floridia, Giuseppe
    Li, Zhiyuan
    Yamamoto, Masahiro
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2020, 31 (03) : 593 - 610
  • [4] Well-posedness results for a class of semilinear time-fractional diffusion equations
    Bruno de Andrade
    Vo Van Au
    Donal O’Regan
    Nguyen Huy Tuan
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [5] Well-Posedness of Time-Fractional Advection-Diffusion-Reaction Equations
    William McLean
    Kassem Mustapha
    Raed Ali
    Omar Knio
    Fractional Calculus and Applied Analysis, 2019, 22 : 918 - 944
  • [6] Well-posedness results for a class of semilinear time-fractional diffusion equations
    de Andrade, Bruno
    Vo Van Au
    O'Regan, Donal
    Nguyen Huy Tuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):
  • [7] WELL-POSEDNESS OF TIME-FRACTIONAL ADVECTION-DIFFUSION-REACTION EQUATIONS
    McLean, William
    Mustapha, Kassem
    Ali, Raed
    Knio, Omar
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (04) : 918 - 944
  • [8] WELL-POSEDNESS RESULTS FOR NONLINEAR FRACTIONAL DIFFUSION EQUATION WITH MEMORY QUANTITY
    Tuan, Nguyen Huy
    Nguyen, Anh Tuan
    Debbouche, Amar
    Antonov, Valery
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (10): : 2815 - 2838
  • [9] Generic Well-posedness for an Inverse Source Problem for a Multi-term Time-fractional Diffusion Equation
    Li, Zhiyuan
    Cheng, Xing
    Liu, Yikan
    TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (04): : 1005 - 1020
  • [10] WELL-POSEDNESS AND REGULARITY OF CAPUTO-HADAMARD TIME-FRACTIONAL DIFFUSION EQUATIONS
    Yang, Zhiwei
    Zheng, Xiangcheng
    Wang, Hong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (01)