Local Well-posedness of Nonlinear Time-fractional Diffusion Equation

被引:0
作者
Suechoei, Apassara [1 ]
Ngiamsunthorn, Parinya Sa [2 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Dept Math, Bangkok 10140, Thailand
[2] King Mongkuts Univ Technol Thonburi KMUTT, Dept Math, Fac Sci, Math & Stat Applicat MaSA, Bangkok, Thailand
来源
THAI JOURNAL OF MATHEMATICS | 2021年 / 19卷 / 03期
关键词
tempered fractional calculus; existence and uniqueness; diffusion equation; DIFFERENTIAL-EQUATION; GLOBAL EXISTENCE; BLOW-UP; ORDER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the local well-posedness of the following time-fractional nonlinear diffusion equation {(C)D(0,t)(alpha,lambda)u - Delta u = vertical bar u vertical bar(p-1)u, (x,t) is an element of R-n x (0,T], u(x, 0) = u(0)(x), x is an element of R-n, where 0 < alpha < 1, lambda >= 0, T < infinity, p > 1 , u(0) is an element of C-0(R-n) and D-c(0,t)alpha,lambda denotes Caputo tempered fractional derivative of order alpha. The local existence and uniqueness results are obtained from heat kernel and fixed point theorem. Then, we extend the solution to establish a maximal mild solution. Moreover, we provide estimate for continuous dependence on initial condition.
引用
收藏
页码:865 / 884
页数:20
相关论文
共 40 条
[1]   An epidemic prediction from analysis of a combined HIV-COVID-19 co-infection model via ABC-fractional operator [J].
Ahmed, Idris ;
Goufo, Emile F. Doungmo ;
Yusuf, Abdullahi ;
Kumam, Poom ;
Chaipanya, Parin ;
Nonlaopon, Kamsing .
ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (03) :2979-2995
[2]   Solutions for impulsive fractional pantograph differential equation via generalized anti-periodic boundary condition [J].
Ahmed, Idris ;
Kumam, Poom ;
Abubakar, Jamilu ;
Borisut, Piyachat ;
Sitthithakerngkiet, Kanokwan .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[3]   On Hilfer generalized proportional fractional derivative [J].
Ahmed, Idris ;
Kumam, Poom ;
Jarad, Fahd ;
Borisut, Piyachat ;
Jirakitpuwapat, Wachirapong .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[4]   Stability analysis for boundary value problems with generalized nonlocal condition via Hilfer-Katugampola fractional derivative [J].
Ahmed, Idris ;
Kumam, Poom ;
Jarad, Fahd ;
Borisut, Piyachat ;
Sitthithakerngkiet, Kanokwan ;
Ibrahim, Alhassan .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[5]  
[Anonymous], 2019, HDB FRACTIONAL CALCU
[6]   Optimal control problem for coupled time-fractional diffusion systems with final observations [J].
Bahaa, G. M. ;
Hamiaz, A. .
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01) :124-135
[7]  
Bazhlekova EG., 1998, Fract. Calc. Appl. Anal, V1, P255
[8]   POSITIVE SOLUTION FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH NONLOCAL MULTI-POINT CONDITION [J].
Borisut, Piyachat ;
Kumam, Poom ;
Ahmed, Idris ;
Sitthithakerngkiet, Kanokwan .
FIXED POINT THEORY, 2020, 21 (02) :427-440
[9]   Existence and uniqueness for ψ-Hilfer fractional differential equation with nonlocal multi-point condition [J].
Borisut, Piyachat ;
Kumam, Poom ;
Ahmed, Idris ;
Jirakitpuwapat, Wachirapong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) :2506-2520
[10]  
Britton N. F, 1986, REACTION DIFFUSION