Probing ion current in solid-electrolytes at the meso- and nanoscale

被引:4
|
作者
Martinez, Joseph [1 ]
Ashby, David [2 ]
Zhu, Cheng [3 ]
Dunn, Bruce [2 ]
Baker, Lane A. [3 ]
Siwy, Zuzanna S. [1 ,4 ,5 ]
机构
[1] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[2] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[3] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA
[4] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[5] Univ Calif Irvine, Dept Bioengn, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
CURRENT RECTIFICATION; TRANSPORT-PROPERTIES; SINGLE NANOCHANNELS; NANOPORES; BATTERIES; IONOGELS; LIQUIDS; GEL; NANOTUBES; MEMBRANES;
D O I
10.1039/c8fd00071a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present experimental approaches to probe the ionic conductivity of solid electrolytes at the meso- and nanoscales. Silica ionogel based electrolytes have emerged as an important class of solid electrolytes because they maintain both fluidic and high-conductivity states at the nanoscale, but at the macroscale they are basically solid. Single mesopores in polymer films are shown to serve as templates for cast ionogels. The ionic conductivity of the ionogels was probed by two experimental approaches. In the first approach, the single-pore/ionogel membranes were placed between two chambers of a conductivity cell, in a set-up similar to that used for investigating liquid electrolytes. The second approach involved depositing contacts directly onto the membrane and measuring conductivity without the bulk solution present. Ionic conductivity determined by the two methods was in excellent agreement with macroscopic measurements, which suggested that the electrochemical properties of ionogel based electrolytes are preserved at the mesoscale, and ionogels can be useful in designing meso-scaled energy-storage devices.
引用
收藏
页码:55 / 67
页数:13
相关论文
共 50 条
  • [1] Scattering and skin depthat the meso- and nanoscale
    Chandra, Nitish
    HIGH CONTRAST METASTRUCTURES VI, 2017, 10113
  • [2] IONIC-CONDUCTION IN DISPERSED SOLID-ELECTROLYTES
    SHUKLA, AK
    VAIDEHI, N
    JACOB, KT
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-CHEMICAL SCIENCES, 1986, 96 (06): : 533 - 547
  • [3] Modifying Ionogel Solid-Electrolytes for Complex Electrochemical Systems
    Ashby, David S.
    Cardenas, Jorge
    Bhandarkar, Austin Suhas
    Cook, Adam W.
    Talin, A. Alec
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (10): : 12467 - 12474
  • [4] High-pressure lubricity at the meso- and nanoscale
    Vanossi, A.
    Benassi, A.
    Varini, N.
    Tosatti, E.
    PHYSICAL REVIEW B, 2013, 87 (04)
  • [5] Domain wall propagation in meso- and nanoscale ferroelectrics
    McQuaid, R. G. P.
    McMillen, M.
    Chang, L-W
    Gruverman, A.
    Gregg, J. M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (02)
  • [6] Electronic measurements of entropy in meso- and nanoscale systems
    Pyurbeeva, Eugenia
    Mol, Jan A.
    Gehring, Pascal
    CHEMICAL PHYSICS REVIEWS, 2022, 3 (04):
  • [7] Nonlinear dynamics at the meso- and nanoscale: stochasticity meets determinism
    Wang, T.
    Puccioni, G. P.
    Lippi, G. L.
    2018 IEEE WORKSHOP ON COMPLEXITY IN ENGINEERING (COMPENG 2018), 2018,
  • [8] Adhesion studies of latex film surfaces on the meso- and nanoscale
    Oláh, A
    Hernpenius, MA
    Zou, S
    Vancso, GJ
    APPLIED SURFACE SCIENCE, 2006, 252 (10) : 3714 - 3728
  • [9] Improvement in the Electrochemical Performance of Anode-supported Solid Oxide Fuel Cells by Meso- and Nanoscale Structural Modifications
    Seo, H.
    Kishimoto, M.
    Ding, C.
    Iwai, H.
    Saito, M.
    Yoshida, H.
    FUEL CELLS, 2020, 20 (05) : 570 - 579
  • [10] Reducing the environmental footprint of solid-electrolytes - a green synthesis route for LATP
    Rosen, Melanie
    Hecker, Philipp
    Mann, Markus
    Ma, Qianli
    Gross, Juergen Peter
    Schwaiger, Ruth
    Guillon, Olivier
    Fattakhova-Rohlfing, Dina
    Finsterbusch, Martin
    GREEN CHEMISTRY, 2024, 26 (05) : 2712 - 2720