An interface shell element for coupling non-matching quadrilateral shell meshes

被引:11
|
作者
Thuan Ho-Nguyen-Tan [1 ]
Kim, Hyun-Gyu [1 ]
机构
[1] Seoul Natl Univ Sci & Technol, Dept Mech & Automot Engn, 232 Gongneung Ro, Seoul 01811, South Korea
基金
新加坡国家研究基金会;
关键词
Interface shell element; Non-matching meshes; Variable-node elements; Transverse shear locking; Membrane locking; PLATE-BENDING ELEMENTS; VARIABLE-NODE ELEMENTS; ASSUMED NATURAL STRAIN; ONE-POINT QUADRATURE; FINITE-ELEMENT; MITC4+SHELL ELEMENT; INCOMPATIBLE MODES; VIBRATION ANALYSIS; BUCKLING ANALYSIS; MEMBRANE LOCKING;
D O I
10.1016/j.compstruc.2018.07.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this study, a novel interface shell element (ISE) is developed based on a variable-node element formulation to couple non-matching quadrilateral shell meshes. Shape functions for ISEs are explicitly presented in a polynomial form with the use of appropriate supports of weight functions in moving least square (MLS) approximation. Assumed natural strains in the form of the mixed interpolation of tensorial components (MITC) approach are employed to avoid the transverse shear locking when the thickness of shell tends to zero. Moreover, an assumed membrane strain field defined over quadrilateral subdomains subdividing an ISE is used to alleviate the membrane locking in curved ISEs. Numerical experiments show the effectiveness and efficiency of ISE for connecting dissimilar quadrilateral shell meshes at a common interface. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:151 / 173
页数:23
相关论文
共 50 条
  • [31] Nitsche's method for coupling non-matching meshes in fluid-structure vibration problems
    Hansbo, P
    Hermansson, J
    COMPUTATIONAL MECHANICS, 2003, 32 (1-2) : 134 - 139
  • [32] Nitsche's method for coupling non-matching meshes in fluid-structure vibration problems
    P. Hansbo
    J. Hermansson
    Computational Mechanics, 2003, 32 : 134 - 139
  • [33] Conservative load transfer along curved fluid-solid interface with non-matching meshes
    Jaiman, R. K.
    Jiao, X.
    Geubelle, P. H.
    Loth, E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 218 (01) : 372 - 397
  • [34] Nitsche's method for coupling non-matching meshes in fluid-structure vibration problems
    Hansbo, P.
    Hermansson, J.
    2003, Springer Verlag (32) : 1 - 2
  • [35] Thermo-mechanical contact problems on non-matching meshes
    Hueeber, S.
    Wohmuth, B. I.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (15-16) : 1338 - 1350
  • [36] Fully Implicit Coupling for Non-Matching Grids
    Darwish, M.
    Geahchan, W.
    Moukalled, F.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 47 - 50
  • [37] Extension of the parallel Sparse Matrix Vector Product (SpMV) for the implicit coupling of PDEs on non-matching meshes
    Houzeaux, G.
    Borrel, R.
    Cajas, J. C.
    Vazquez, M.
    COMPUTERS & FLUIDS, 2018, 173 : 216 - 225
  • [38] Weak imposition of essential boundary conditions in the finite element approximation of elliptic problems with non-matching meshes
    Codina, Ramon
    Baiges, Joan
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 104 (07) : 624 - 654
  • [39] Solving Broadband Vibroacoustic Problems with Fast Boundary Element- Finite Element Method Divided by Non-Matching Meshes
    Wang B.
    Wang T.
    You J.
    Xiao J.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2018, 52 (10): : 167 - 176
  • [40] A SHEAR DEFORMABLE CURVED SHELL ELEMENT OF QUADRILATERAL SHAPE
    LAKSHMINARAYANA, HV
    KAILASH, K
    COMPUTERS & STRUCTURES, 1989, 33 (04) : 987 - 1001