Estimation of Stress Strength Reliability in Multicomponent for Exponentiated Inverse Power Lindley Distribution

被引:0
|
作者
Bashir, Nafeesa [1 ]
Jan, Rameesa [1 ]
Jan, T. R. [1 ]
Joorel, J. P. Singh [2 ]
Bashir, Raeesa [3 ]
机构
[1] Univ Kashmir, Dept Stat, Srinagar, India
[2] Univ Jammu, Dept Stat, Jammu, India
[3] Amity Univ Dubai, Dept Math & Quantitat Anal, Dubai, U Arab Emirates
来源
PROCEEDINGS 2019 AMITY INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AICAI) | 2019年
关键词
Exponentiated Inverse Power Lindley Distributed; Asymptotic Confidence Interval; Asymptotic Variance; Maximum Likelihood Estimation; Stress-strength Reliability (SSR); P(Y-LESS-THAN-X); MODEL;
D O I
10.1109/aicai.2019.8701289
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this research article, we study the exponentiated inverse power Lindley distribution for estimating the reliability of k-unit stress strength structure with changing values of shape parameter. The reliability has been obtained using ML estimation method in the samples developed from stress and strength population. Finally Monte Carlo techniquehas been used to compare the reliability estimates.
引用
收藏
页码:510 / 514
页数:5
相关论文
共 50 条