DIFFUSION LIMIT OF FOKKER-PLANCK EQUATION WITH HEAVY TAIL EQUILIBRIA

被引:6
作者
Nasreddine, Elissar [1 ]
Puel, Marjolaine [2 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, F-31062 Toulouse, France
[2] Univ Nice, Lab Dieudonne, F-06108 Nice 2, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2015年 / 49卷 / 01期
关键词
Fokker Plank; diffusion limit; heavy tail; Cauchy distribution; ANOMALOUS DIFFUSION; KINETIC-EQUATIONS; TRANSPORT;
D O I
10.1051/m2an/2014020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the diffusion limit of the Fokker-Planck equation of plasma physics, in which the equilibrium function decays towards zero at infinity like a negative power function. We prove that for an appropriate time scale, in a suitable weighted Sobolev space, the small mean free path limit gives rise to a diffusion equation.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [31] A rigorous derivation of a linear kinetic equation of Fokker-Planck type in the limit of grazing collisions
    Desvillettes, L
    Ricci, V
    JOURNAL OF STATISTICAL PHYSICS, 2001, 104 (5-6) : 1173 - 1189
  • [32] AN OPERATOR SPLITTING SCHEME FOR THE FRACTIONAL KINETIC FOKKER-PLANCK EQUATION
    Duong, Manh Hong
    Lu, Yulong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (10) : 5707 - 5727
  • [33] Green function for a non-Markovian Fokker-Planck equation: Comb-model and anomalous diffusion
    da Silva, L. R.
    Tateishi, A. A.
    Lenzi, M. K.
    Lenzi, E. K.
    da Silva, P. C.
    BRAZILIAN JOURNAL OF PHYSICS, 2009, 39 (2A) : 483 - 487
  • [34] Generalized Fokker-Planck equation: Derivation and exact solutions
    Denisov, S. I.
    Horsthemke, W.
    Haenggi, P.
    EUROPEAN PHYSICAL JOURNAL B, 2009, 68 (04) : 567 - 575
  • [35] A nonlinear Fokker-Planck equation approach for interacting systems: Anomalous diffusion and Tsallis statistics
    Marin, D.
    Ribeiro, M. A.
    Ribeiro, H., V
    Lenzi, E. K.
    PHYSICS LETTERS A, 2018, 382 (29) : 1903 - 1907
  • [36] A finite element/Fourier treatment of the Fokker-Planck equation
    Spencer, J. Andrew
    Ji, Jeong-Young
    Held, Eric D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (18) : 6192 - 6206
  • [37] Numerical Method for the Time Fractional Fokker-Planck Equation
    Cao, Xue-Nian
    Fu, Jiang-Li
    Huang, Hu
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (06) : 848 - 863
  • [38] Adjoint Fokker-Planck equation and runaway electron dynamics
    Liu, Chang
    Brennan, Dylan P.
    Bhattacharjee, Amitava
    Boozer, Allen H.
    PHYSICS OF PLASMAS, 2016, 23 (01)
  • [39] Multi-diffusive nonlinear Fokker-Planck equation
    Ribeiro, Mauricio S.
    Casas, Gabriela A.
    Nobre, Fernando D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (06)
  • [40] Transport in the spatially tempered, fractional Fokker-Planck equation
    Kullberg, A.
    del-Castillo-Negrete, D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (25)