DIFFUSION LIMIT OF FOKKER-PLANCK EQUATION WITH HEAVY TAIL EQUILIBRIA

被引:6
|
作者
Nasreddine, Elissar [1 ]
Puel, Marjolaine [2 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, F-31062 Toulouse, France
[2] Univ Nice, Lab Dieudonne, F-06108 Nice 2, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2015年 / 49卷 / 01期
关键词
Fokker Plank; diffusion limit; heavy tail; Cauchy distribution; ANOMALOUS DIFFUSION; KINETIC-EQUATIONS; TRANSPORT;
D O I
10.1051/m2an/2014020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the diffusion limit of the Fokker-Planck equation of plasma physics, in which the equilibrium function decays towards zero at infinity like a negative power function. We prove that for an appropriate time scale, in a suitable weighted Sobolev space, the small mean free path limit gives rise to a diffusion equation.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] Solution of Fokker-Planck equation for a broad class of drift and diffusion coefficients
    Fa, Kwok Sau
    PHYSICAL REVIEW E, 2011, 84 (01):
  • [22] Finite difference approximations for the fractional Fokker-Planck equation
    Chen, S.
    Liu, F.
    Zhuang, P.
    Anh, V.
    APPLIED MATHEMATICAL MODELLING, 2009, 33 (01) : 256 - 273
  • [23] Solution of the Fokker-Planck Equation with a Logarithmic Potential
    Dechant, A.
    Lutz, E.
    Barkai, E.
    Kessler, D. A.
    JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (06) : 1524 - 1545
  • [24] Solution of the Fokker-Planck Equation with a Logarithmic Potential
    A. Dechant
    E. Lutz
    E. Barkai
    D. A. Kessler
    Journal of Statistical Physics, 2011, 145 : 1524 - 1545
  • [25] FRACTIONAL DIFFUSION LIMIT FOR A FRACTIONAL VLASOV-FOKKER-PLANCK EQUATION
    Aceves-Sanchez, Pedro
    Cesbron, Ludovic
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (01) : 469 - 488
  • [26] Large lattice fractional Fokker-Planck equation
    Tarasov, Vasily E.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [27] Transasymptotics and hydrodynamization of the Fokker-Planck equation for gluons
    Behtash, A.
    Kamata, S.
    Martinez, M.
    Schafer, T.
    Skokov, V
    PHYSICAL REVIEW D, 2021, 103 (05)
  • [28] Information Geometric Investigation of Solutions to the Fractional Fokker-Planck Equation
    Anderson, Johan
    MATHEMATICS, 2020, 8 (05)
  • [29] The precise time-dependent solution of the Fokker-Planck equation with anomalous diffusion
    Guo Ran
    Du Jiulin
    ANNALS OF PHYSICS, 2015, 359 : 187 - 197
  • [30] Comment on Fractional Fokker-Planck Equation with Space and Time Dependent Drift and Diffusion
    Magdziarz, Marcin
    Gajda, Janusz
    Zorawik, Tomasz
    JOURNAL OF STATISTICAL PHYSICS, 2014, 154 (05) : 1241 - 1250