DIFFUSION LIMIT OF FOKKER-PLANCK EQUATION WITH HEAVY TAIL EQUILIBRIA

被引:6
|
作者
Nasreddine, Elissar [1 ]
Puel, Marjolaine [2 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, F-31062 Toulouse, France
[2] Univ Nice, Lab Dieudonne, F-06108 Nice 2, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2015年 / 49卷 / 01期
关键词
Fokker Plank; diffusion limit; heavy tail; Cauchy distribution; ANOMALOUS DIFFUSION; KINETIC-EQUATIONS; TRANSPORT;
D O I
10.1051/m2an/2014020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the diffusion limit of the Fokker-Planck equation of plasma physics, in which the equilibrium function decays towards zero at infinity like a negative power function. We prove that for an appropriate time scale, in a suitable weighted Sobolev space, the small mean free path limit gives rise to a diffusion equation.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] DIFFUSION LIMIT FOR KINETIC FOKKER-PLANCK EQUATION WITH HEAVY TAILS EQUILIBRIA: THE CRITICAL CASE
    Cattiaux, Patrick
    Nasreddine, Elissar
    Puel, Marjolaine
    KINETIC AND RELATED MODELS, 2019, 12 (04) : 727 - 748
  • [2] STABILITY OF INVERSE TRANSPORT EQUATION IN DIFFUSION SCALING AND FOKKER-PLANCK LIMIT
    Chen, Ke
    Li, Qin
    Wang, Li
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (05) : 2626 - 2647
  • [3] Fractional diffusion for Fokker-Planck equation with heavy tail equilibrium: An a la Koch spectral method in any dimension
    Dechicha, Dahmane
    Puel, Marjolaine
    ASYMPTOTIC ANALYSIS, 2024, 136 (02) : 79 - 132
  • [4] Anomalous heat diffusion from fractional Fokker-Planck equation
    Li, Shu-Nan
    Cao, Bing-Yang
    APPLIED MATHEMATICS LETTERS, 2020, 99 (99)
  • [5] Diffusion Approximation for Fokker Planck with Heavy Tail Equilibria: A Spectral Method in Dimension 1
    Lebeau, Gilles
    Puel, Marjolaine
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 366 (02) : 709 - 735
  • [6] Anomalous diffusion and anisotropic nonlinear Fokker-Planck equation
    da Silva, PC
    da Silva, LR
    Lenzi, EK
    Mendes, RS
    Malacarne, LC
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 342 (1-2) : 16 - 21
  • [7] Levy anomalous diffusion and fractional Fokker-Planck equation
    Yanovsky, VV
    Chechkin, AV
    Schertzer, D
    Tur, AV
    PHYSICA A, 2000, 282 (1-2): : 13 - 34
  • [8] HYDRODYNAMIC LIMIT FOR A FOKKER-PLANCK EQUATION WITH COEFFICIENTS IN SOBOLEV SPACES
    Markou, Ioannis
    NETWORKS AND HETEROGENEOUS MEDIA, 2017, 12 (04) : 683 - 705
  • [9] A generalized Fokker-Planck equation for anomalous diffusion in velocity space
    Dubinova, A. A.
    Trigger, S. A.
    PHYSICS LETTERS A, 2012, 376 (24-25) : 1930 - 1936
  • [10] Anomalous diffusion, nonlinear fractional Fokker-Planck equation and solutions
    Lenzi, EK
    Malacarne, LC
    Mendes, RS
    Pedron, IT
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 319 : 245 - 252