Quantum groups and quantum shuffles

被引:183
作者
Rosso, M
机构
[1] Univ Strasbourg 1, IRMA, F-67084 Strasbourg, France
[2] Inst Univ France, F-67084 Strasbourg, France
关键词
D O I
10.1007/s002220050249
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let U-q(+) be the "upper triangular part" of the quantized enveloping algebra associated with a symetrizable Cartan matrix. We show that U-q(+) is isomorphic las a Hopf algebra) to the subalgebra generated by elements of degree 0 and 1 of the cotensor Hopf algebra associated with a suitable Hopf bimodule on the group algebra of Z(n). This method gives supersymetric as well as multiparametric versions of U-q(+) in a uniform way (for a suitable choice of the Hopf bimodule). We give a classification result about the Hopf algebras which can be obtained in this way, under a reasonable growth condition. We also show how the general formalism allows to reconstruct higher rank quantized enveloping algebras from U(q)sl(2) and a suitable irreducible finite dimensional representation.
引用
收藏
页码:399 / 416
页数:18
相关论文
共 23 条
[1]   INDEFINITE KAC-MOODY ALGEBRAS OF CLASSICAL TYPE [J].
BENKART, G ;
KANG, SJ ;
MISRA, KC .
ADVANCES IN MATHEMATICS, 1994, 105 (01) :76-110
[2]   GELFAND-KIRILLOV DIMENSION [J].
BORHO, W ;
KRAFT, H .
MATHEMATISCHE ANNALEN, 1976, 220 (01) :1-24
[3]  
Bourbaki N., 1968, Actualites Scientifiques et Industrielles, V1337
[4]  
Chari V., 1995, A Guide to Quantum Groups
[5]  
De Concini C., 1992, J AM MATH SOC, V5, P151
[6]  
Drinfel'd V. G., 1987, P INT C MATHEMATICIA, V1, P798
[7]   A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION [J].
JIMBO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :63-69
[8]  
Kassel C., 1995, GRADUATE TEXTS MATH, V155
[9]  
KRAUSE GR, 1988, RES NOTES MATH, V116
[10]  
LUSZTIG G, 1990, GEOMETRIAE DEDICATA, V35, P89