Multi-Level Multi-Modal Cross-Attention Network for Fake News Detection

被引:31
|
作者
Ying, Long [1 ]
Yu, Hui [1 ]
Wang, Jinguang [2 ]
Ji, Yongze [3 ]
Qian, Shengsheng [4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
[2] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230601, Peoples R China
[3] China Univ Petr, Sch Informat Sci & Engn, Beijing 102249, Peoples R China
[4] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
来源
IEEE ACCESS | 2021年 / 9卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Semantics; Visualization; Task analysis; Bit error rate; Convolutional neural networks; Social networking (online); Multi-level neural networks; fake news detection; multi-modal fusion;
D O I
10.1109/ACCESS.2021.3114093
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of the Mobile Internet, more and more users publish multi-modal posts on social media platforms. Fake news detection has become an increasingly challenging task. Although there are many works using deep schemes to extract and combine textual and visual representation in the post, most existing methods do not sufficiently utilize the complementary multi-modal information containing semantic concepts and entities to complement and enhance each modality. Moreover, these methods do not model and incorporate the rich multi-level semantics of text information to improve fake news detection tasks. In this paper, we propose a novel end-to-end Multi-level Multi-modal Cross-attention Network (MMCN) which exploits the multi-level semantics of textual content and jointly integrates the relationships of duplicate and different modalities (textual and visual modality) of social multimedia posts in a unified framework. Pre-trained BERT and ResNet models are employed to generate high-quality representations for text words and image regions respectively. A multi-modal cross-attention network is then designed to fuse the feature embeddings of the text words and image regions by simultaneously considering data relationships in duplicate and different modalities. Specially, due to different layers of the transformer architecture have different feature representations, we employ a multi-level encoding network to capture the rich multi-level semantics to enhance the presentations of posts. Extensive experiments on the two public datasets (WEIBO and PHEME) demonstrate that compared with the state-of-the-art models, the proposed MMCN has an advantageous performance.
引用
收藏
页码:132363 / 132373
页数:11
相关论文
共 50 条
  • [41] TRIMOON: Two-Round Inconsistency-based Multi-modal fusion Network for fake news detection
    Xiong, Shufeng
    Zhang, Guipei
    Batra, Vishwash
    Xi, Lei
    Shi, Lei
    Liu, Liangliang
    INFORMATION FUSION, 2023, 93 : 150 - 158
  • [42] Dmvae: a dual-stream multi-modal variational autoencoder for multi-task fake news detection
    Guo, Ying
    Hu, Shuting
    Li, Yao
    Di, Chong
    Liu, Jie
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (02)
  • [43] EANN: Event Adversarial Neural Networks for Multi-Modal Fake News Detection
    Wang, Yaqing
    Ma, Fenglong
    Jin, Zhiwei
    Yuan, Ye
    Xun, Guangxu
    Jha, Kishlay
    Su, Lu
    Gao, Jing
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 849 - 857
  • [44] Multi-Modal Fake News Detection via Bridging the Gap between Modals
    Liu, Peng
    Qian, Wenhua
    Xu, Dan
    Ren, Bingling
    Cao, Jinde
    ENTROPY, 2023, 25 (04)
  • [45] Assess and Guide: Multi-modal Fake News Detection via Decision Uncertainty
    Wu, Jie
    Xu, Danni
    Liu, Wenxuan
    Ong, Yew-Soon
    Zhou, Joey Tianyi
    Hu, Siyuan
    Zhu, Hongyuan
    Wang, Zheng
    PROCEEDINGS OF THE 1ST ACM MULTIMEDIA WORKSHOP ON MULTI-MODAL MISINFORMATION GOVERNANCE IN THE ERA OF FOUNDATION MODELS, MIS 2024, 2024, : 37 - 44
  • [46] BDANN: BERT-Based Domain Adaptation Neural Network for Multi-Modal Fake News Detection
    Zhang, Tong
    Wang, Di
    Chen, Huanhuan
    Zeng, Zhiwei
    Guo, Wei
    Miaoz, Chunyan
    Cui, Lizhen
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [47] Fake News Detection via Multi-scale Semantic Alignment and Cross-modal Attention
    Wang, Jiandong
    Zhang, Hongguang
    Liu, Chun
    Yang, Xiongjun
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 2406 - 2410
  • [48] Human Cognition-Based Consistency Inference Networks for Multi-Modal Fake News Detection
    Wu, Lianwei
    Liu, Pusheng
    Zhao, Yongqiang
    Wang, Peng
    Zhang, Yangning
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (01) : 211 - 225
  • [49] Multi-Level Attention Map Network for Multimodal Sentiment Analysis
    Xue, Xiaojun
    Zhang, Chunxia
    Niu, Zhendong
    Wu, Xindong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (05) : 5105 - 5118
  • [50] Multi-modality frequency-aware cross attention network for fake news detection
    Cui, Wei
    Zhang, Xuerui
    Shang, Mingsheng
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (01) : 433 - 455