Finite Time Extinction for Nonlinear Schrodinger Equation in 1D and 2D

被引:12
作者
Carles, Remi [1 ,2 ]
Ozawa, Tohru [3 ]
机构
[1] CNRS, Montpellier, France
[2] Univ Montpellier 2, F-34095 Montpellier, France
[3] Waseda Univ, Dept Appl Phys, Tokyo, Japan
关键词
Finite time extinction; Asymptotic behavior; Nonlinear Schrodinger equation; Nonlinear damping; Primary: 35Q55; Secondary:; 35B35; 35D30; WEAK SOLUTIONS; INEQUALITIES;
D O I
10.1080/03605302.2014.967356
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Schrodinger equation with power nonlinearity, either on a compact manifold without boundary, or on the whole space in the presence of harmonic confinement, in space dimension one and two. Up to introducing an extra superlinear damping to prevent finite time blow up, we show that the presence of a sublinear damping always leads to finite time extinction of the solution in 1D, and that the same phenomenon is present in the case of small mass initial data in 2D.
引用
收藏
页码:897 / 917
页数:21
相关论文
共 22 条
[1]  
Adly S, 2006, ADV MECH MATH, V12, P289
[2]  
Agmon Shmuel., 1982, Mathematical Notes, V29
[3]  
[Anonymous], 1997, Applied Math. Sci.
[4]  
Antonelli P., INT MATH RE IN PRESS
[5]   Global Well-Posedness for Cubic NLS with Nonlinear Damping [J].
Antonelli, Paolo ;
Sparber, Christof .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (12) :2310-2328
[6]   On the Finite Energy Weak Solutions to a System in Quantum Fluid Dynamics [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (02) :657-686
[7]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[8]   Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds [J].
Burq, N ;
Gérard, P ;
Tzvetkov, N .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (03) :569-605
[9]  
Carles R, 2004, OSAKA J MATH, V41, P693
[10]   Madelung, Gross-Pitaevskii and Korteweg [J].
Carles, Remi ;
Danchin, Raphael ;
Saut, Jean-Claude .
NONLINEARITY, 2012, 25 (10) :2843-2873