Dynamical robust H∞ filtering for nonlinear uncertain systems: An LMI approach

被引:37
作者
Abbaszadeh, Masoud [1 ,2 ]
Marquez, Horacio J. [1 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada
[2] Maplesoft, Dept Res & Dev, Waterloo, ON N2V 1K8, Canada
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2010年 / 347卷 / 07期
基金
加拿大自然科学与工程研究理事会;
关键词
OBSERVER DESIGN; STATE ESTIMATION; TIME-DELAY; STABILIZATION;
D O I
10.1016/j.jfranklin.2010.05.016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a new approach to robust H-infinity filtering for a class of nonlinear systems with time-varying uncertainties is proposed in the LMI framework based on a general dynamical observer structure. The nonlinearities under consideration are assumed to satisfy local Lipschitz conditions and appear in both state and measured output equations. The admissible Lipschitz constants of the nonlinear functions are maximized through LMI optimization. The resulting H-infinity observer guarantees asymptotic stability of the estimation error dynamics with prespecified disturbance attenuation level and is robust against time-varying parametric uncertainties as well as Lipschitz nonlinear additive uncertainty. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1227 / 1241
页数:15
相关论文
共 24 条
[1]  
Abbaszadeh M., 2007, PROCEEDING 2007 AM C, P1699
[2]  
ABBASZADEH M, 2006, P 45 IEEE C DEC CONT, P3895
[3]   Robust H∞ observer design for sampled-data Lipschitz nonlinear systems with exact and Euler approximate models [J].
Abbaszadeh, Masoud ;
Marquez, Horacio J. .
AUTOMATICA, 2008, 44 (03) :799-806
[4]   LMI optimization approach to robust H∞ observer design and static output feedback stabilization for discrete-time nonlinear uncertain systems [J].
Abbaszadeh, Masoud ;
Marquez, Horacio J. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2009, 19 (03) :313-340
[5]   State estimation for nonlinear systems under model uncertainties:: a class of sliding-mode observers [J].
Aguilar-López, R ;
Maya-Yescas, R .
JOURNAL OF PROCESS CONTROL, 2005, 15 (03) :363-370
[6]  
Boyd S., 1994, LINEAR MATRIX INEQUA
[7]   Robust nonlinear observer for Lipschitz nonlinear systems subject to disturbances [J].
Chen, Min-Shin ;
Chen, Chi-Che .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (12) :2365-2369
[8]   A new nonlinear robust disturbance observer [J].
Chen, XK ;
Fukuda, T ;
Young, KD .
SYSTEMS & CONTROL LETTERS, 2000, 41 (03) :189-199
[9]   H-INFINITY FILTERING FOR A CLASS OF UNCERTAIN NONLINEAR-SYSTEMS [J].
DESOUZA, CE ;
XIE, LH ;
WANG, YY .
SYSTEMS & CONTROL LETTERS, 1993, 20 (06) :419-426
[10]   On regional nonlinear H-infinity-filtering [J].
Fridman, E ;
Shaked, U .
SYSTEMS & CONTROL LETTERS, 1997, 29 (04) :233-240