A superlinear multifunction arising in connection with mass transfer problems

被引:7
作者
Levin, VL [1 ]
机构
[1] RUSSIAN ACAD SCI,CENT ECON & MATH INST,MOSCOW 117418,RUSSIA
来源
SET-VALUED ANALYSIS | 1996年 / 4卷 / 01期
关键词
superlinear multifunction; duality theory for mass transfer problems; cyclically monotone operator; dynamic optimization;
D O I
10.1007/BF00419373
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a nonempty set X, we consider all cost functions c: X x X --> R(1) boolean OR {+infinity} and take the multifunction Q(0)(c) := {u is an element of R(X): u(x) - u(y) less than or equal to c(x, y) for all x, y is an element of X} that arises in connection with mass transfer problems generalizing the classical Monge-Kantorovich problem. We study properties of the multifunction including conditions on c for Q(0)(c) to be nonempty and characterizations of Q(0)(c) for a given c. Applications are given to cyclically monotone operators and to dynamic optimization.
引用
收藏
页码:41 / 65
页数:25
相关论文
共 19 条
[1]   OPTIMAL DEVELOPMENT IN A MULTI-SECTOR ECONOMY [J].
GALE, D .
REVIEW OF ECONOMIC STUDIES, 1967, 34 (01) :1-18
[2]  
Levin V. L., 1979, RUSS MATH SURV, V34, P1, DOI 10.1070/RM1979v034n03ABEH003996
[3]  
LEVIN VL, 1986, LECT NOTES CONTR INF, V81, P435
[4]   SOME APPLICATIONS OF SET-VALUED MAPPINGS IN MATHEMATICAL ECONOMICS [J].
LEVIN, VL .
JOURNAL OF MATHEMATICAL ECONOMICS, 1991, 20 (01) :69-87
[5]   A FORMULA FOR THE OPTIMAL VALUE IN THE MONGE-KANTOROVICH PROBLEM WITH A SMOOTH COST FUNCTION, AND A CHARACTERIZATION OF CYCLICALLY MONOTONE MAPPINGS [J].
LEVIN, VL .
MATHEMATICS OF THE USSR-SBORNIK, 1992, 71 (02) :533-548
[6]  
LEVIN VL, 1990, MAT SBORNIK, V181, P1694
[7]  
Levin VL, 1984, SOV MATH DOKL, V29, P638
[8]  
LEVIN VL, 1987, SOV MATH DOKL, V35, P178
[9]  
LEVIN VL, 1990, FUNCTIONAL ANAL OPTI, P141
[10]  
LEVIN VL, IN PRESS J MATH EC