Logarithmic Coefficient Bounds and Coefficient Conjectures for Classes Associated with Convex Functions

被引:23
作者
Alimohammadi, Davood [1 ]
Adegani, Ebrahim Analouei [2 ]
Bulboaca, Teodor [3 ]
Cho, Nak Eun [4 ]
机构
[1] Arak Univ, Fac Sci, Dept Math, Arak 3815688349, Iran
[2] Shahrood Univ Technol, Fac Math Sci, POB 316-36155, Shahrood, Iran
[3] Babes Bolyai Univ, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
[4] Pukyong Natl Univ, Coll Nat Sci, Dept Appl Math, Busan 48513, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
10.1155/2021/6690027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well-known that the logarithmic coefficients play an important role in the development of the theory of univalent functions. If S denotes the class of functions f(z) = z + Sigma(infinity)(n=2)a(n)z(n) analytic and univalent in the open unit disk U, then the logarithmic coefficients gamma(n)(f) of the function f is an element of S are defined by log (f(z)/z) = 2 Sigma(infinity)(n =1)gamma(n)(f)z(n). In the current paper, the bounds for the logarithmic coefficients gamma(n) for some well-known classes like C(1+alpha z) for alpha is an element of (0, 1] and CVhpl (1/2) were estimated. Further, conjectures for the logarithmic coefficients.n for functions f belonging to these classes are stated. For example, it is forecasted that if the function f is an element of C(1 + alpha z), then the logarithmic coefficients of f satisfy the inequalities vertical bar gamma(n)vertical bar <= alpha/(2n(n+1)), n is an element of N: Equality is attained for the function L-alpha,L-n, that is, log (L-alpha,L-n(z)/z) = 2 Sigma(infinity)(n=1) gamma(n)(L-alpha,L-n)z(n) = (alpha/n(n + 1))z(n) + ..., z is an element of U.
引用
收藏
页数:7
相关论文
共 28 条
[11]   Coefficient bounds and differential subordinations for analytic functions associated with starlike functions [J].
Ebadian, Ali ;
Bulboaca, Teodor ;
Cho, Nak Eun ;
Adegani, Ebrahim Analouei .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)
[12]   Relations of a planar domains bounded by hyperbolas with families of holomorphic functions [J].
Kanas, S. ;
Masih, V. S. ;
Ebadian, A. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
[13]   On logarithmic coefficients of certain starlike functions related to the vertical strip [J].
Kargar, Rahim .
JOURNAL OF ANALYSIS, 2019, 27 (04) :985-995
[14]   On Brennan's conjecture for a special class of functions [J].
Kayumov, IP .
MATHEMATICAL NOTES, 2005, 78 (3-4) :498-502
[15]   Logarithmic coefficients for certain subclasses of close-to-convex functions [J].
Kumar, U. Pranav ;
Vasudevarao, A. .
MONATSHEFTE FUR MATHEMATIK, 2018, 187 (03) :543-563
[16]  
MA WC, 1994, C PR LECT NOTE APPL, V1, P157
[17]  
Milin I. M., 1980, Metric Questions in the Theory of Functions, P86
[18]  
Milin I. M., 1983, ZAPISKI NAUCHNYKH SE, V125, P135
[19]  
Milin I.M., 2008, TRANSLATIONS MATH MO, V49, DOI [10.1090/mmono/049, DOI 10.1090/MMONO/049]
[20]  
Miller S.S., 2000, Differential Subordinations: Theory and Applications, DOI DOI 10.1201/9781482289817