Phase-field modeling of porous-ductile fracture in non-linear thermo-elasto-plastic solids

被引:91
作者
Dittmann, M. [1 ]
Aldakheel, F. [2 ]
Schulte, J. [1 ]
Schmidt, F. [1 ]
Krueger, M. [1 ]
Wriggers, P. [2 ]
Hesch, C. [1 ]
机构
[1] Univ Siegen, Chair Computat Mech, Siegen, Germany
[2] Leibniz Univ Hannover, Inst Continuum Mech, Hannover, Germany
关键词
Phase-field approach; Thermomechanics; GTN model; Ductile fracture; Isogeometric analysis; FINITE-ELEMENT-METHOD; CRACK-PROPAGATION; BRITTLE-FRACTURE; ISOGEOMETRIC ANALYSIS; FAILURE CRITERIA; DAMAGE; FORMULATION; STRAIN; FRAMEWORK; GROWTH;
D O I
10.1016/j.cma.2019.112730
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phase-field methods to regularize sharp interfaces represent a well established technique nowadays. In fracture mechanics, recent works have shown the capability of the method for brittle as well as ductile problems formulated within the fully non-linear regime. In this contribution, we introduce a framework to simulate porous-ductile fracture in isotropic thermoelasto-plastic solids undergoing large deformations. Therefore, a modified Gurson-Tvergaard-Needleman GTN-type plasticity model is combined with a phase-field fracture approach to account for a temperature-dependent growth of voids on micro-scale followed by crack initiation and propagation on macro-scale. The multi-physical formulation is completed by the incorporation of an energy transfer into the thermal field such that the temperature distribution depends on the evolution of the plastic strain and the crack phase-field. Eventually, this physically comprehensive fracture formulation is validated by experimental data. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:25
相关论文
共 89 条
[1]  
Aldakheel Fadi, 2014, Proceedings in Applied Mathematics and Mechanics, V14, P411, DOI 10.1002/pamm.201410193
[2]  
Aldakheel F, 2016, Ph.D. thesis, DOI [10.18419/opus-8803, DOI 10.18419/OPUS-8803]
[3]   Virtual elements for finite thermo-plasticity problems [J].
Aldakheel, Fadi ;
Hudobivnik, Blaz ;
Wriggers, Peter .
COMPUTATIONAL MECHANICS, 2019, 64 (05) :1347-1360
[4]   VIRTUAL ELEMENT FORMULATION FOR PHASE-FIELD MODELING OF DUCTILE FRACTURE [J].
Aldakheel, Fadi ;
Hudobivnik, Blai ;
Wriggers, Peter .
INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2019, 17 (02) :181-200
[5]   Phase-field modeling of brittle fracture using an efficient virtual element scheme [J].
Aldakheel, Fadi ;
Hudobivnik, Blaz ;
Hussein, Ali ;
Wriggers, Peter .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 341 :443-466
[6]   A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling [J].
Aldakheel, Fadi ;
Wriggers, Peter ;
Miehe, Christian .
COMPUTATIONAL MECHANICS, 2018, 62 (04) :815-833
[7]   Micromorphic approach for gradient-extended thermo-elastic-plastic solids in the logarithmic strain space [J].
Aldakheel, Fadi .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2017, 29 (06) :1207-1217
[8]   Coupled thermomechanical response of gradient plasticity [J].
Aldakheel, Fadi ;
Miehe, Christian .
INTERNATIONAL JOURNAL OF PLASTICITY, 2017, 91 :1-24
[9]   Comparison of Phase-Field Models of Fracture Coupled with Plasticity [J].
Alessi, R. ;
Ambati, M. ;
Gerasimov, T. ;
Vidoli, S. ;
De Lorenzis, L. .
ADVANCES IN COMPUTATIONAL PLASTICITY: A BOOK IN HONOUR OF D. ROGER J. OWEN, 2018, 46 :1-21
[10]   Phase-field modeling of ductile fracture [J].
Ambati, M. ;
Gerasimov, T. ;
De Lorenzis, L. .
COMPUTATIONAL MECHANICS, 2015, 55 (05) :1017-1040