Explicit solutions for variational problems in the quadrant

被引:22
作者
Avram, F [1 ]
Dai, JG
Hasenbein, JJ
机构
[1] Heriot Watt Univ, Dept Stat & Actuarial Sci, Edinburgh, Midlothian, Scotland
[2] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[4] Univ Texas, Grad Program Operat Res & Ind Engn, Dept Mech Engn, Austin, TX 78712 USA
关键词
variational problems; large deviations; Skorohod problems; reflecting Brownian motions; queueing networks;
D O I
10.1023/A:1011004620420
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study a variational problem (VP) that is related to semimartingale reflecting Brownian motions (SRBMs), Specifically, this VP appears in the large deviations analysis of the stationary distribution of SRBMs in the d-dimensional orthant R-+(d) When d = 2, we provide an explicit analytical solution to the VP This solution gives an appealing characterization of the optimal path to a given point in the quadrant and also provides an explicit expression for the optimal value of the VP. For each boundary of the quadrant, we construct a "cone of boundary influence", which determines the nature of optimal paths in different regions of the quadrant. In addition to providing a complete solution in the 2-dimensional case, our analysis provides several results which may be used in analyzing the VP in higher dimensions and more general state spaces.
引用
收藏
页码:259 / 289
页数:31
相关论文
共 37 条
[1]  
[Anonymous], 1979, NONNEGATIVE MATRICES
[2]  
ATAR R, 1998, 9819 LCDS BROWN U LE
[3]  
Bernard A., 1991, Stochastics and Stochastics Reports, V34, P149, DOI 10.1080/17442509108833680
[4]  
Bertsimas D, 1998, ANN APPL PROBAB, V8, P1027
[5]  
BOROVKOV A. A., 1996, PROBABILITY THEORY M, P12
[6]   Simple necessary and sufficient conditions for the stability of constrained processes [J].
Budhiraja, A ;
Dupuis, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 59 (05) :1686-1700
[7]   CONTINUOUS ORDERING IN THE TIAL+NB SYSTEM [J].
CHEN, GL ;
WANG, JG ;
ZUN, ZQ ;
YE, HQ .
INTERMETALLICS, 1994, 2 (01) :31-36
[8]  
DAI JG, 1992, ANN APPL PROBAB, V2, P65, DOI DOI 10.1214/aoap/1177005771
[9]  
Dembo A., 1998, APPL MATH, V38
[10]   LYAPUNOV FUNCTIONS FOR SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS [J].
DUPUIS, P ;
WILLIAMS, RJ .
ANNALS OF PROBABILITY, 1994, 22 (02) :680-702