Impact of Metal Hybridization on Contact Resistance and Leakage Current of Carbon Nanotube Transistors

被引:6
作者
Su, Sheng-Kai [1 ]
Sanchez-Soares, Alfonso [2 ]
Chen, Edward [1 ]
Kelly, Thomas [2 ]
Fagas, Giorgos [3 ]
Greer, James C. [4 ]
Pitner, Gregory [5 ]
Wong, H-S Philip [5 ,6 ]
Radu, Iuliana P. [1 ]
机构
[1] Taiwan Semicond Mfg Co TSMC, Corp Res, Hsinchu 30075, Taiwan
[2] EOLAS Designs Ltd, Cork T23 AK70, Ireland
[3] Univ Coll Cork, Tyndall Natl Inst, Cork T12 R5CP, Ireland
[4] Univ Nottingham Ningbo China, Elect & Elect Engn Dept, Ningbo 315100, Peoples R China
[5] Taiwan Semicond Mfg Co, Corp Res, San Jose, CA 95134 USA
[6] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
关键词
Metals; Couplings; Contact resistance; Tunneling; Logic gates; MOSFET; Leakage currents; Carbon nanotube (CNT); CMOS scaling; contact resistance; leakage current; metal hybridization; PERFORMANCE;
D O I
10.1109/LED.2022.3185991
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Carbon nanotube field effect transistors (CNFETs) have potential applications in future logic technology as they display good electrostatic control and excellent transport properties. However, contact resistance and leakage currents could limit scaling of CNFETs. Non-equilibrium Green's function (NEGF) simulation investigates that coupling between contact metal and CNT impacts both contact resistance and leakage current. The physical mechanisms underlying the effects are analyzed. A model with calibrated metal coupling strength from experimental data projects I-ON-I-OFF design space to understand the trade-off between shrinking contact and extension lengths. For CNT with diameter of 1 nm, both contact and extension lengths greater than 8 nm are a good compromise between I-ON and I-OFF for digital logic in advanced technology nodes.
引用
收藏
页码:1367 / 1370
页数:4
相关论文
共 16 条
[1]   ELECTRONIC STATES OF CARBON NANOTUBES [J].
AJIKI, H ;
ANDO, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (04) :1255-1266
[2]  
[Anonymous], 2021, EOLAS Proprietary TCAD Tool Q
[3]   The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors [J].
Chen, ZH ;
Appenzeller, J ;
Knoch, J ;
Lin, YM ;
Avouris, P .
NANO LETTERS, 2005, 5 (07) :1497-1502
[4]   A numerical study of scaling issues for Schottky-Barrier carbon nanotube transistors [J].
Guo, J ;
Datta, S ;
Lundstrom, M .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2004, 51 (02) :172-177
[5]  
Guo J., 2003, ARXIV
[6]   Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics [J].
Javey, A ;
Guo, J ;
Farmer, DB ;
Wang, Q ;
Wang, DW ;
Gordon, RG ;
Lundstrom, M ;
Dai, HJ .
NANO LETTERS, 2004, 4 (03) :447-450
[7]   Ballistic carbon nanotube field-effect transistors [J].
Javey, A ;
Guo, J ;
Wang, Q ;
Lundstrom, M ;
Dai, HJ .
NATURE, 2003, 424 (6949) :654-657
[8]   Nonequilibrium green's function treatment of phonon scattering in carbon-nanotube transistors [J].
Koswatta, Siyuranga O. ;
Hasan, Sayed ;
Lundstrom, Mark S. ;
Anantram, M. P. ;
Nikonov, Dmitri E. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (09) :2339-2351
[9]   A Compact Virtual-Source Model for Carbon Nanotube FETs in the Sub-10-nm Regime-Part II: Extrinsic Elements, Performance Assessment, and Design Optimization [J].
Lee, Chi-Shuen ;
Pop, Eric ;
Franklin, Aaron D. ;
Haensch, Wilfried ;
Wong, Hon-Sum Philip .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (09) :3070-3078
[10]   Bandgap Extraction at 10 K to Enable Leakage Control in Carbon Nanotube MOSFETs [J].
Lin, Qing ;
Pitner, Gregory ;
Gilardi, Carlo ;
Su, Sheng-Kai ;
Zhang, Zichen ;
Chen, Edward ;
Bandaru, Prabhakar ;
Kummel, Andrew ;
Wang, Han ;
Passlack, Matthias ;
Mitra, Subhasish ;
Wong, H-S Philip .
IEEE ELECTRON DEVICE LETTERS, 2022, 43 (03) :490-493