Estimate of the travelling wave speed for an integro-differential equation

被引:7
作者
Bessonov, N. [1 ]
Beuter, A. [2 ,3 ]
Trofimchuk, S. [4 ]
Volpert, V. [5 ,6 ,7 ,8 ]
机构
[1] Russian Acad Sci, Inst Problems Mech Engn, St Petersburg 199178, Russia
[2] Bordeaux INP, Bordeaux, France
[3] Equipage Innovat SARL, Plerin, France
[4] Univ Talca, Inst Matemat & Fis, Casilla 747, Talca, Chile
[5] Univ Lyon 1, UMR CNRS 5208, Inst Camille Jordan, F-69622 Villeurbanne, France
[6] INRIA Lyon La Doua, INRIA Team Dracula, F-69603 Villeurbanne, France
[7] RUDN Univ, Peoples Friendship Univ Russia, 6 Miklukho Maklaya St, Moscow 117198, Russia
[8] UMI CNRS 2615, Poncelet Ctr, 11 Bolshoy Vlasyevskiy, Moscow 119002, Russia
关键词
Nonlocal reaction-diffusion equation; Wave speed; Minimax representation; Estimates; DIFFUSION-EQUATIONS; PROPAGATION; FRONTS; UNIQUENESS; EXISTENCE; STABILITY;
D O I
10.1016/j.aml.2018.07.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Travelling waves for nonlocal reaction-diffusion equations are studied. The minimax representation of the wave speed is obtained. It is used to obtain analytical estimates and asymptotic values of the speed. Two regimes of wave propagation are identified. One of them is dominated by diffusion and another one by the nonlocal interaction. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 12 条
[1]   Variational characterization of the speed of propagation of fronts for the nonlinear diffusion equation [J].
Benguria, RD ;
Depassier, MC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 175 (01) :221-227
[2]  
Chen X. F., 1997, ADV DIFFERENTIAL EQU, V2, P125, DOI [DOI 10.57262/ADE/1366809230, DOI 10.1186/1687-1847-2013-125]
[3]   Propagation speed of travelling fronts in non local reaction-diffusion equations [J].
Coville, J ;
Dupaigne, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (05) :797-819
[4]   Spectrum of some integro-differential operators and stability of travelling waves [J].
Ducrot, A. ;
Marion, M. ;
Volpert, V. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (13) :4455-4473
[5]   EXISTENCE AND UNIQUENESS OF TRAVELING WAVES FOR A NEURAL-NETWORK [J].
ERMENTROUT, GB ;
MCLEOD, JB .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1993, 123 :461-478
[6]   Reaction-diffusion waves of blood coagulation [J].
Galochkina, Tatiana ;
Bouchnita, Anass ;
Kurbatova, Polina ;
Volpert, Vitaly .
MATHEMATICAL BIOSCIENCES, 2017, 288 :130-139
[7]   TRAVELING FRONTS IN NONLINEAR DIFFUSION EQUATIONS [J].
HADELER, KP ;
ROTHE, F .
JOURNAL OF MATHEMATICAL BIOLOGY, 1975, 2 (03) :251-263
[8]   Variational principles or propagation speeds in inhomogeneous media [J].
Heinze, S ;
Papanicolaou, G ;
Stevens, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2001, 62 (01) :129-148
[9]   Using a virtual cortical module implementing a neural field model to modulate brain rhythms in Parkinson's disease [J].
Modolo, Julien ;
Bhattacharya, Basabdatta ;
Edwards, Roderick ;
Campagnaud, Julien ;
Legros, Alexandre ;
Beuter, Anne .
FRONTIERS IN NEUROSCIENCE, 2010, 4
[10]   Existence, uniqueness and asymptotic stability of traveling wavefronts in a non-local delayed diffusion equation [J].
Shiwang M A ;
Jianhong W U .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2007, 19 (02) :391-436