Semiparametric multiple kernel estimators and model diagnostics for count regression functions

被引:1
作者
Djerroud, Lamia [1 ]
Kiesse, Tristan Senga [2 ]
Adjabi, Smail [1 ]
机构
[1] Univ Bejaia, Res Unit LaMOS, Bejaia 06000, Algeria
[2] Agrocampus Ouest, UMR SAS, INRA, Rennes, France
关键词
Discrete multivariate kernel; Semiparametric count regression; Cross-validation; Model diagnostics; DENSITY-ESTIMATION;
D O I
10.1080/03610926.2019.1568488
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This study concerns semiparametric approaches to estimate discrete multivariate count regression functions. The semiparametric approaches investigated consist of combining discrete multivariate nonparametric kernel and parametric estimations such that (i) a prior knowledge of the conditional distribution of model response may be incorporated and (ii) the bias of the traditional nonparametric kernel regression estimator of Nadaraya-Watson may be reduced. We are precisely interested in combination of the two estimations approaches with some asymptotic properties of the resulting estimators. Asymptotic normality results were showed for nonparametric correction terms of parametric start function of the estimators. The performance of discrete semiparametric multivariate kernel estimators studied is illustrated using simulations and real count data. In addition, diagnostic checks are performed to test the adequacy of the parametric start model to the true discrete regression model. Finally, using discrete semiparametric multivariate kernel estimators provides a bias reduction when the parametric multivariate regression model used as start regression function belongs to a neighborhood of the true regression model.
引用
收藏
页码:2131 / 2157
页数:27
相关论文
共 20 条
[1]  
Abdous B., 2009, AFR DIASPORA J MATH, V8, P63
[2]   On semiparametric regression for count explanatory variables [J].
Abdous, Belkacem ;
Kokonendji, Celestin C. ;
Kiesse, Tristan Senga .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (06) :1537-1548
[3]   MULTIVARIATE BINARY DISCRIMINATION BY KERNEL METHOD [J].
AITCHISON, J ;
AITKEN, CGG .
BIOMETRIKA, 1976, 63 (03) :413-420
[4]  
Bosq D., 1987, THEORIE ESTIMATION F
[5]   Bayesian approach to bandwidth selection for multivariate count regression function estimation by associated discrete kernel [J].
Djerroud L. ;
Zougab N. ;
Adjabi S. .
Journal of Statistical Theory and Practice, 2017, 11 (4) :553-572
[6]   LOCAL QUASI-LIKELIHOOD WITH A PARAMETRIC GUIDE [J].
Fan, Jianqing ;
Wu, Yichao ;
Feng, Yang .
ANNALS OF STATISTICS, 2009, 37 (6B) :4153-4183
[7]   Parametrically guided non-parametric regression [J].
Glad, IK .
SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (04) :649-668
[8]   Local multiplicative bias correction for asymmetric kernel density estimators [J].
Hagmann, M. ;
Scaillet, O. .
JOURNAL OF ECONOMETRICS, 2007, 141 (01) :213-249
[9]   A bivariate count data model for household tourism demand [J].
Hellström, J .
JOURNAL OF APPLIED ECONOMETRICS, 2006, 21 (02) :213-226
[10]   NONPARAMETRIC DENSITY-ESTIMATION WITH A PARAMETRIC START [J].
HJORT, NL ;
GLAD, IK .
ANNALS OF STATISTICS, 1995, 23 (03) :882-904